Optical amplifiers – Test methods –
Part 1-3: Power and gain parameters – Optical power meter method

Amplificateurs optiques – Méthodes d'essai –
Partie 1-3: Paramètres de puissance et de gain – Méthode par appareil de mesure de la puissance optique
INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL AMPLIFIERS – TEST METHODS –

Part 1-3: Power and gain parameters –
Optical power meter method

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61290-1-3 has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

This third edition cancels and replaces the second edition published in 2005. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) Detail description of most parameters has been described in IEC 61290-1 and removed from this part;

b) Description of maximum output signal power and maximum total output power are added.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>86C/1255/CDV</td>
<td>86C/1292/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61290 series, published under the general title *Optical amplifiers – Test methods*¹ can be found on the IEC website.

This International Standard is to be used in conjunction with IEC-61290-1.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

¹) The first editions of some of these parts were published under the general title *Optical fibre amplifiers – Basic specification* or *Optical amplifier test methods.*
1 Scope

This part of IEC 61290-1 applies to all commercially available optical amplifiers (OA) and optically amplified subsystems. It applies to OA using optically pumped fibres (OFA based on either rare-earth doped fibres or on the Raman effect), semiconductors (SOA), and waveguides (POWA).

NOTE The applicability of the test methods described in the present standard to distributed Raman amplifiers is for further study.

The object of this part of IEC 61290-1 is to establish uniform requirements for accurate and reliable measurements, by means of the optical power meter test method, of the following OA parameters, as defined in IEC 61291-1:

a) nominal output signal power;
b) gain;
c) polarization-dependent gain;
d) maximum output signal power;
e) maximum total output power.

All numerical values followed by (‡) are suggested values for which the measurement is assured. Other values may be acceptable but should be verified.

This part of IEC 61290-1 applies to single-channel amplifiers. For multichannel amplifiers, the IEC 61290-10 series applies.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61290-1, Optical amplifiers – Test methods – Part 1: Power and gain parameters

IEC 61291-1, Optical amplifiers – Part 1: Generic specification
SOMMAIRE

AVANT-PROPOS .. 19
1 Domaine d’application ... 21
2 Références normatives .. 21
3 Termes, définitions et abréviations .. 22
 3.1 Termes et définitions .. 22
 3.2 Abréviations .. 22
4 Appareillage .. 22
5 Échantillon d’essai ... 25
6 Procédure .. 25
7 Calculs .. 29
8 Résultats de l’essai ... 30
Annexe A (informative) Optimisation de la largeur spectrale du filtre passe-bande optique ... 32
Bibliographie ... 33

Figure 1 – Configuration typique de l’appareillage d’essai de mesure de la puissance optique pour les mesurages ... 23
AMPLIFICATEURS OPTIQUES – MÉTHODES D’ESSAI –

Partie 1-3: Paramètres de puissance et de gain – Méthode par appareil de mesure de la puissance optique

AVANT-PROPOS

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés sont représentés dans chaque comité d'études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agrées comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC s'assure de l'exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l’IEC. L’IEC n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 61290-1-3 a été établie par le sous-comité 86C: Systèmes et dispositifs actifs à fibres optiques, du comité d’études 86 de l’IEC: Fibres optiques.

Cette troisième édition annule et remplace la deuxième édition publiée en 2005. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

a) La description détaillée de la plupart des paramètres figure dans l’IEC 61290-1 et a donc été supprimée de la présente partie;

b) La description de la puissance maximale du signal de sortie et celle de la puissance totale de sortie maximale sont ajoutées.
Le texte de cette norme est issu des documents suivants:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>86C/1255/CDV</td>
<td>86C/1292/RVC</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 61290, publiées sous le titre général *Amplificateurs optiques – Méthodes d'essai*\(^1\) est disponible sur le site web de l'IEC.

Cette Norme internationale doit être utilisée conjointement avec l'IEC 61290-1.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

\(^1\) Les premières éditions de certaines de ces parties ont été publiées sous le titre général *Amplificateurs à fibres optiques – Spécification de base* ou *Amplificateurs optiques – Méthodes d'essai*.
AMPLIFICATEURS OPTIQUES – MÉTHODES D'ESSAI –

Partie 1-3: Paramètres de puissance et de gain –
Méthode par appareil de mesure de la puissance optique

1 Domaine d’application

La présente partie de l'IEC 61290-1 s’applique à tous les amplificateurs optiques (AO) et sous-systèmes à amplification optique, disponibles sur le marché. Elle s’applique aux AO utilisant des fibres pompées optiquement (AFO basé sur des fibres dopées aux terres rares ou sur l’effet Raman), des semi-conducteurs (AOS), et des guides d’ondes (POWA).

NOTE L’applicabilité des méthodes d’essai décrites dans la présente norme à des amplificateurs Raman répartis est destinée à une étude ultérieure.

L’objet de la présente partie de l’IEC 61290-1 est d’établir des exigences uniformes pour des mesurages précis et fiables, par le biais de la méthode d’essai par appareil de mesure de la puissance optique, des paramètres d’AO donnés ci-dessous, tels qu’ils sont définis dans l’IEC 61291-1:

a) puissance nominale du signal de sortie;
b) gain;
c) gain en fonction de la polarisation;
d) puissance maximale du signal de sortie;
e) puissance totale de sortie maximale.

Toutes les valeurs numériques suivies de (‡) sont des valeurs suggérées, pour lesquelles la mesure est assurée. D’autres valeurs peuvent être acceptables, mais il convient qu’elles soient vérifiées.

La présente partie de l’IEC 61290-1 s’applique aux amplificateurs à un seul canal. Pour les amplificateurs à canaux multiples, la série IEC 61290-10 s’applique.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l’édition citée s’applique. Pour les références non datées, la dernière édition du document de référence s’applique (y compris les éventuels amendements).

IEC 60793-1-40, Fibres optiques – Partie 1-40: Méthodes de mesure et procédures d’essai – Affaiblissement

IEC 61290-1, Amplificateurs optiques – Méthodes d’essai – Partie 1: Paramètres de puissance et de gain

IEC 61291-1, Amplificateurs optiques – Partie 1: Spécification générique