Optical amplifiers – Test methods –
Part 4-3: Power transient parameters – Single channel optical amplifiers in output power control
Title
IEC 61290-4-3/Ed1: Optical amplifiers – Test methods - Part 4-3: Power transient parameters – Single channel optical amplifiers in output power control

ATTENTION
IEC – CENELEC
PARALLEL VOTING

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this final draft International Standard (DIS) is submitted for parallel voting.

The CENELEC members are invited to vote through the CENELEC online voting system.
CONTENTS

FOREWORD ... 3

1 Scope .. 5

2 Normative references .. 5

3 Terms, definitions and abbreviations .. 6

3.1 Terms and definitions ... 6

3.2 Abbreviations ... 7

4 Apparatus .. 7

4.1 Test set-up .. 7

4.2 Characteristics of test equipment ... 8

5 Test sample .. 9

6 Procedure ... 9

6.1 Test preparation .. 9

6.2 Test conditions ... 9

7 Calculations .. 10

8 Test results ... 11

8.1 Test settings .. 11

8.2 Test data ... 12

Annex A (informative) Overview of power transient events in single channel EDFA 13

A.1 Background... 13

A.2 Characteristic input power behaviour .. 13

A.3 Parameters for characterizing transient behaviour .. 15

Annex B (informative) Background on power transient phenomena in a single channel EDFA .. 17

B.1 Amplifier chains in optical networks .. 17

B.2 Typical optical amplifier design .. 17

B.3 Approaches to address detection errors .. 19

Annex C (informative) Slew rate effect on transient gain response 23

Bibliography .. 24

Figure 1 – Power transient test set-up ... 8

Figure 2 – OA output power transient response of a) input power increase 11

Figure A.1 – Example OA input power transient cases for a receiver application 14

Figure A.2 – Input power measurement parameters for a) input power increase and b) input power decrease .. 15

Figure A.3 – OA output power transient response of a) input power increase and b) input power decrease .. 16

Figure B.1 – Transient response to a) input power drop (inverse step transient) with transient control, b) deactivated (constant pump power), and c) activated (power control) ... 21

Figure B.2 – Transient response to a) input power rise (step transient) with transient control, b) deactivated (constant pump power), and c) activated (power control) ... 22

Table 1 – Examples of transient control measurement test conditions 10
INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL AMPLIFIERS – TEST METHODS

Part 4-3: Power transient parameters –
Single channel optical amplifiers in output power control

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61290-4-3 has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

This International Standard is to be used in conjunction with IEC 61291-1:2012, on the basis of which it was established.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>86C/XX/FDIS</td>
<td>86C/XX/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts of the IEC 61290 series, published under the general title *Optical amplifiers – Test methods*) can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

The National Committees are requested to note that for this publication the stability date is 2019.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

\[1\] The first editions of some of these parts were published under the general title *Optical fibre amplifiers – Basic specification* or *Optical amplifier test methods.*
1 Scope

This part of IEC 61290 applies to output power controlled optically amplified, elementary sub-systems. It applies to optical fibre amplifiers (OFA) using active fibres containing rare-earth dopants, presently commercially available, as indicated in IEC 61291-1, as well as alternative optical amplifiers that can be used for single channel output power controlled operation, such as semiconductor optical amplifiers (SOA).

The object of this standard is to provide the general background for optical amplifier (OA) power transients and its measurements and to indicate those IEC standard test methods for accurate and reliable measurements of the following transient parameters.

a) Channel addition/removal transient power overshoot
b) Channel addition/removal transient power undershoot
c) Channel addition/removal overcompensation response offset
d) Channel addition/removal transient steady-state power offset
e) Channel addition/removal transient power response time (settling time)

The stimulus and responses behaviours under consideration include

1) Channel power increase (step transient)
2) Channel power reduction (inverse step transient)
3) Channel power increase/reduction (pulse transient)
4) Channel power reduction/increase (inverse pulse transient)
5) Channel power increase/reduction/increase (lightning bolt transient)
6) Channel power reduction/increase/reduction (inverse lightning bolt transient)

These parameters have been included to provide a complete description of the transient behaviour of an output power transient controlled OA. The test definition defined here are applicable if the amplifier is an OFA or an alternative OA. However, the description in Annex A of this document concentrates on the physical performance of an OFA and provides a detailed description of the behaviour of OFA; it does not give a similar description of other OA types.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61291-1:2012, Optical amplifiers – Part 1: Generic specification