CORRIGENDUM 1

NOTE This corrigendum constitutes a revision of the structure of subclause 4.5, as well as an addition to subclause 4.10.3.

Page 17

4.5 Voltage tests

Replace the text from 4.5 to the end of 4.5.3.5 by the following:

4.5 Insulation resistance

For filters fitted with a discharge resistor, this measurement can only be made with the discharge resistor disconnected. If the discharge resistor cannot be disconnected without the filter being destroyed, the test shall be omitted for lot-by-lot tests; for qualification approval and periodic tests, where the discharge resistor cannot be disconnected without the filter being destroyed, the sample shall consist of filters specially made without discharge resistors.

4.5.1 Measuring voltage

Before the measurement is made, the filters shall be fully discharged. Unless otherwise specified in the relevant specification, the insulation resistance shall be measured, at the d.c. voltage specified in Table 2.

<table>
<thead>
<tr>
<th>Voltage rating of the filter</th>
<th>Measuring voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_R or $U_C < 10$ V</td>
<td>U_C or $U_R \pm 10%$</td>
</tr>
<tr>
<td>10 V $\leq U_R$ or $U_C < 100$ V</td>
<td>(10 ± 1) V a</td>
</tr>
<tr>
<td>100 V $\leq U_R$ or $U_C < 500$ V</td>
<td>(100 ± 15) V</td>
</tr>
<tr>
<td>500 V $\leq U_R$ or U_C</td>
<td>(500 ± 50) V</td>
</tr>
</tbody>
</table>

a When it can be demonstrated that the voltage has no influence on the measuring result, or that a known relationship exists, measurement can be performed at voltages up to the rated or category voltage (10 V shall be used in case of dispute).

U_R is the rated voltage for use in defining the measuring voltage to be used under standard atmospheric conditions for testing.

U_C is the category voltage for use in defining the measuring voltage to be used at the upper category temperature.
4.5.2 Application of measuring voltage

The insulation resistance shall be measured between the measuring points defined in Table 3, specified in the relevant specification.

Test A, between terminations, applies to all filters, whether insulated or not. See Test A of Table 3.

Test B, internal insulation, applies to insulated filters in uninsulated metal cases. This test is not applicable to coaxial filters. See Test B of Table 3.

Test C, external insulation, applies to insulated filters in non-metallic cases or in insulated metal cases. For this test, the measuring voltage shall be applied using one of the three following methods as specified in the relevant specification. This test is not applicable to coaxial filters; it is applicable only to insulated filters in a non-metallic case or in an insulated metal case. See Test C of Table 3.

4.5.2.1 Foil method

A metal foil shall be closely wrapped around the body of the filter.

For filters with axial terminations, this foil shall extend beyond each end by not less than 5 mm, provided that a minimum distance of 1 mm/kV, or 1 mm, whichever is greater, can be maintained between the foil and the terminations. If this minimum distance cannot be maintained, the extension of the foil shall be reduced by as much as is necessary to establish the distance of 1 mm/kV, or 1 mm whichever is greater.

For filters with unidirectional terminations, a minimum distance of 1 mm/kV, or 1 mm, whichever is greater, shall be maintained between the edge of the foil and each termination.

4.5.2.2 Method for filters with mounting devices

The filter shall be mounted in its normal manner on a metal plate, which extends at least 12.7 mm in all directions beyond the mounting face of the filter.

4.5.2.3 V-block method

The filter shall be clamped in the trough of a 90° metallic V-block of such size that the filter body does not extend beyond the extremities of the block.

The clamping force shall be such as to guarantee adequate physical contact between the filter and the block. The clamping force shall be chosen in such a way that no destruction or damage of the filter occurs.

The filter shall be positioned in accordance with the following:

a) for cylindrical filters: the filter shall be positioned in the block so that the termination furthest from the axis of the filter is nearest to one of the faces of the block;

b) for rectangular filters: the filter shall be positioned in the block so that the termination nearest the edge of the filter is nearest to one of the faces of the block.

For cylindrical and rectangular filters having axial terminations, any out-of-centre positioning of the termination at its emergence from the filter body shall be ignored.

4.5.3 Mean time to measuring

The insulation resistance shall be measured after the voltage has been applied for 60 s ± 5 s unless otherwise prescribed in the detail specification.
4.5.4 Temperature correction factor

When prescribed by the detail specification, the temperature at which the measurement is made shall be noted. If this temperature differs from 20 °C, a correction shall be made to the measured value by multiplying the value by the appropriate correction factor prescribed in the sectional specification.

4.5.5 Information to be given in a detail specification

The relevant specification shall prescribe:

a) the tests and the measuring voltage corresponding to each of these tests (see Table 3);
b) the method of applying the voltage (one of the methods described in 4.5.2.1, 4.5.2.2 or 4.5.2.3);
c) time of electrification if other than 1 min;
d) any special precautions to be taken during measurements;
e) any correction factors required for measurement over the range of temperatures covered by the standard atmospheric conditions for testing;
f) the temperature of measurement if other than the standard atmospheric conditions for testing;
g) the minimum value of insulation resistance for the various tests.

Table 3 – Measuring points

<table>
<thead>
<tr>
<th>Tests</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Between terminations</td>
<td>Between pairs of lines carrying the load current through the suppression components e.g. line-line or line-neutral.</td>
</tr>
<tr>
<td>B Internal insulation</td>
<td>Between the load current terminations connected together and the case (except where the case is one termination) (metal cased types only) or between the load current termination and the earth termination.</td>
</tr>
<tr>
<td>C External insulation</td>
<td>Between the load current terminations connected together and the metal plate or foil or V-block (insulated cases not employing metal) or between case and metal plate or foil or V-block (insulated metal cased types only).</td>
</tr>
</tbody>
</table>

NOTE See Figure 2 for examples of the application of this table.
Test A between 1 and 2 or 3 and 4
Test B between 1, 2, 3, 4 together and 5

Test A between 1 and 2 or 3 and 4
Test B between 1, 2, 3, 4 together and 5
Test C 1, 2, 3, 4, 5 together and the metal foil 6 wrapped around the case

Figure 2 – Examples of the application of Table 3
4.5.4 Voltage proof tests

Replace 4.5.4 and its subclauses by the following new 4.6

4.6 Voltage proof

The test prescribed in the relevant sectional or detail specification may be either a d.c. test or an a.c. test.

4.6.1 Test circuit and procedure for a d.c. test

For Test A, where the test voltage will normally be applied across a capacitor, the test circuit shall be such that the conditions relating to the charging and discharging currents and the time constant for charging, prescribed in the relevant specification, are complied with.

![Test circuit for d.c. test](image)

Figure 3 – Test circuit for d.c. test

The resistance of the voltmeter shall be not less than $10\,000\,\Omega/V$.

The resistor R_1 includes the internal resistance of the d.c. supply.

The resistors R_1 and R_2 shall have a resistance of sufficient value to limit the charging and discharging current to the value prescribed in the relevant specification.

Procedure

With the switch in position 2, the two terminals at the top of Figure 3 are connected to a variable d.c. supply of sufficient power, which is then adjusted to the required test voltage.

The filter to be tested is connected to the test circuit as indicated in Figure 3.

The switch is then moved to position 1 to charge the filter capacitance. Where necessary, e.g. when the filter is fitted with a discharge resistor, the voltage measured on the voltmeter shall be re-adjusted to the required test voltage.

The switch shall remain in this position for the time specified after the test voltage has been reached.
The filter capacitance shall be discharged through R_2 by moving the switch to position 2. As soon as the voltmeter reading has fallen to a voltage lower than 24 V or a voltage specified by the filter manufacturer, the filter is short-circuited by moving the switch to position 3. The filter shall then be disconnected.

4.6.2 Test circuit and procedure for an a.c. test

When an a.c. voltage is applied for qualification approval and periodic tests, the voltage may be supplied from a transformer fed from a variable auto-transformer, and the voltage shall be raised from near zero to the test voltage at a rate not exceeding 150 V/s. The test time shall be counted from the time the test voltage is reached. At the end of the test time, the test voltage shall be reduced to near zero and the filter capacitance discharged through a suitable resistor.

For lot-by-lot and 100% testing, the voltage may be applied directly at the full test voltage, but care should be taken to avoid overvoltage peaks.

4.6.3 Tests

Depending on the construction of the filter, the test comprises one or more parts in accordance with Table 3 and the requirements of the relevant specification. When a d.c. test is specified by the relevant sectional or detail specification, the circuit and procedure of 4.6.1 shall be used. When an a.c. test is specified by the relevant specification, the circuit and procedure of 4.6.2 shall be used.

4.6.3.1 Test A - Between terminations

See Test A of Table 3.

4.6.3.2 Test B - Internal insulation

This test is not applicable to coaxial filters. See Test B of Table 3.

4.6.3.3 Test C - External insulation

This test is not applicable to coaxial filters; it is applicable only to insulated filters in a non-metallic case or in an insulated metal case. See Test C of Table 3.

For this test, the test voltage shall be applied using one of the three following methods as specified in the relevant specification:

4.6.3.3.1 Foil method

A metal foil shall be closely wrapped around the body of the filter.

For filters with axial terminations, this foil shall extend beyond each end by not less than 5 mm, provided that a minimum distance of 1 mm/kV, or 1 mm whichever is greater, can be maintained between the foil and the terminations. If this minimum distance cannot be maintained, the extension of the foil shall be reduced by as much as is necessary to establish the distance of 1 mm/kV, or 1 mm whichever is greater.

For filters with unidirectional terminations, a minimum distance of 1 mm/kV, or 1 mm whichever is greater, shall be maintained between the edge of the foil and each termination.

4.6.3.3.2 Method for filters with mounting devices

See 4.5.2.2.
4.6.3.3 V-block method

See 4.5.2.3.

4.6.4 Requirements

For each of the specified tests, there shall be no sign of flashover or permanent breakdown during the test period. Self-healing breakdowns are permitted.

4.6.5 Repetition of the voltage proof test

Attention is drawn to the fact that repeated application of the voltage proof test may cause permanent damage to the filter. If repetition of the voltage proof test is made by the user, the applied voltage should not be greater than 66% of the test voltage specified in the detail specification.

4.6.6 Information to be given in a detail specification

The relevant specification shall prescribe:

a) the tests (see Table 3) and the test voltage corresponding to each of the tests;
b) for the external insulation test (Test C), the method of applying the test voltage (one of the methods described in 4.6.3.3);
c) the time for which the voltage is applied;
d) the maximum charge and discharge currents (when the circuit and procedure of 4.6.1 or 4.6.2 is used); these may be specified by prescribing values for R_1 and R_2 in Figure 3.

Page 21

4.6 Insertion loss

Renumber all the subclauses from 4.6 to 4.25 as 4.7 to 4.26.

Page 24

4.10.3

Add, after ‘Bath temperature: 235 °C ± 5 °C’, the following new phrase:

Bath temperature: 260 °C (for lead-free applications)