Specification for radio disturbance and immunity measuring apparatus and methods –

Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary equipment – Radiated disturbances

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
Specification for radio disturbance and immunity measuring apparatus and methods –
Part 1-4:
Radio disturbance and immunity measuring apparatus – Ancillary equipment –
Radiated disturbances

© IEC 2007 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

PRICE CODE XC
For price, see current catalogue

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CISPR
16-1-4

Second edition
2007-02

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Withdrawing
CONTENTS

FOREWORD .. 9

1 Scope ... 13

2 Normative references ... 13

3 Terms and definitions ... 15

4 Antennas for measurement of radiated radio disturbance .. 17
 4.1 Accuracy of field-strength measurements .. 17
 4.2 Frequency range 9 kHz to 150 kHz ... 19
 4.3 Frequency range 150 kHz to 30 MHz .. 19
 4.4 Frequency range 30 MHz to 300 MHz ... 21
 4.5 Frequency range 300 MHz to 1 000 MHz ... 29
 4.6 Frequency range 1 GHz to 18 GHz ... 31
 4.7 Special antenna arrangements .. 31

5 Test sites for measurement of radio disturbance field strength for the frequency range of 30 MHz to 1 000 MHz .. 33
 5.1 Open area test site .. 33
 5.2 Weather protection enclosure .. 33
 5.3 Obstruction-free area .. 33
 5.4 Ambient radio frequency environment of a test site .. 35
 5.5 Ground plane ... 39
 5.6 Open area site validation procedure .. 39
 5.7 Test site suitability with ground-plane ... 47
 5.8 Test site suitability without ground-plane .. 57
 5.9 Evaluation of set-up table and antenna tower ... 75

6 Reverberating chamber for total radiated power measurement .. 79
 6.1 Chamber .. 79

7 TEM cells for immunity to radiated disturbance measurement 85

8 Test sites for measurement of radio disturbance field strength for the frequency range 1 GHz to 18 GHz ... 85
 8.1 Reference test site ... 85
 8.2 Validation of the test site ... 85
 8.3 Alternative test site .. 113

Annex A (normative) Parameters of broadband antennas .. 115

Annex B (normative) Monopole (1 m rod antenna) performance equations and characterization of the associated antenna matching network ... 123

Annex C (normative) Loop antenna system for magnetic field induced current measurements in the frequency range of 9 kHz to 30 MHz .. 133

Annex D (informative) Construction details for open area test sites in the frequency range of 30 MHz to 1 000 MHz (Clause 5) .. 151

Annex E (normative) Validation procedure of the open area test site for the frequency range of 30 MHz to 1 000 MHz (Clause 5) ... 159

Annex F (informative) Basis for 4 dB site acceptability criterion (Clause 5) 175

Bibliography ... 179
Figure 1 – Short dipole antenna factors for $R_L = 50 \, \Omega$...23
Figure 2 – Obstruction-free area of a test site with a turntable (see 5.3)...37
Figure 3 – Obstruction-free area with stationary EUT (see 5.3) ..37
Figure 4 – Configuration of equipment for measuring site attenuation in horizontal polarization (see 5.6 and Annex E) ..41
Figure 5 – Configuration of equipment for measuring site attenuation in vertical polarization using tuned dipoles (see 5.6 and Annex E) ...41
Figure 6a – Typical antenna positions for alternative test site – Vertical polarization NSA measurements ..51
Figure 6b – Typical antenna positions for alternative test site – Horizontal polarization NSA measurements51
Figure 6c – Typical antenna positions for alternative test site – Vertical polarization NSA measurements for an EUT that does not exceed a volume of 1 m depth, 1.5 m width, 1.5 m height, with the periphery greater than 1 m from the closest material that may cause undesirable reflections ..53
Figure 6d – Typical antenna positions for alternative test site – Horizontal polarization NSA measurements for an EUT that does not exceed a volume of 1 m depth, 1.5 m width and 1.5 m height, with the periphery greater than 1 m from the closest material that may cause undesirable reflections ..53
Figure 6 – Typical antenna positions for alternative test sites ..53
Figure 7 – Graph of theoretical free-space NSA as a function of the frequency for different measurement distances (see Equation 4) ..59
Figure 8 – Measurement positions for the site validation procedure ..65
Figure 9 – Example of one measurement position and antenna tilt for the site validation procedure67
Figure 10 – Typical free-space site reference measurement set-up ..73
Figure 11 – Position of the antenna relative to the edge above a rectangle set-up table (top view)79
Figure 12 – Antenna position above the set-up table (side view) ..79
Figure 13 – Example of a typical paddle stirrer ...81
Figure 14 – Range of coupling attenuation as a function of frequency for a chamber using the stirrer in Figure 13 ...83
Figure 15 – Transmit antenna E-Plane radiation pattern example (for informative purposes only)91
Figure 16 – Transmit antenna H-plane radiation pattern (for informative purposes only)93
Figure 17 – S_{VSWR} measurement positions in a horizontal plane – see 8.2.2.2.1 for description95
Figure 18 – S_{VSWR} positions (height requirements) ...99
Figure 19 – Conditional test position requirements ...111
Figure B.1 – Method using network analyser ..127
Figure B.2 – Method using radio-noise meter and signal generator ..127
Figure B.3 – Example of mounting capacitor in dummy antenna ...129
Figure C.1 – The loop-antenna system, consisting of three mutually perpendicular large-loop antennas135
Figure C.2 – A large-loop antenna containing two opposite slits, positioned symmetrically with respect to the current probe C ..137
Figure C.3 – Construction of the antenna slit .. 139
Figure C.4 – Example of antenna-slit construction using a strap of printed circuit board to obtain a rigid construction .. 139
Figure C.5 – Construction for the metal box containing the current probe 141
Figure C.6 – Example showing the routing of several cables from an EUT to ensure that there is no capacitive coupling from the leads to the loop .. 141
Figure C.7 – The eight positions of the balun-dipole during validation of the large-loop antenna ... 143
Figure C.8 – Validation factor for a large loop-antenna of 2 m diameter 143
Figure C.9 – Construction of the balun-dipole ... 145
Figure C.10 – Conversion factors C_dA (for conversion into dB ($\mu A/m$)) and C_dV (for conversion into dB ($\mu V/m$)) for two standardized measuring distances d .. 147
Figure C.11 – Sensitivity S_D of a large-loop antenna with diameter D relative to a large loop antenna having a diameter of 2 m ... 147
Figure D.1 – The Rayleigh criterion for roughness in the ground plane 153

Table 1 – Normalized site attenuation (recommended geometries for tuned half-wave dipoles with horizontal polarization) .. 55
Table 2 – Normalized site attenuation* (recommended geometries for broadband antennas) .. 57
Table 3 – Maximum dimensions of test volume versus test distance 63
Table 4 – Frequency ranges and step sizes .. 69
Table 5 – S_{VSWR} test positions ... 101
Table 6 – S_{VSWR} reporting requirements .. 113
Table E.1 – Normalized site attenuation* (Recommended geometries for broadband antennas) .. 167
Table E.2 – Normalized site attenuation (Recommended geometries for tuned half-wave dipoles, horizontal polarization) .. 169
Table E.3 – Normalized site attenuation (Recommended geometries for tuned half-wave dipoles – vertical polarization) ... 171
Table E.4 – Mutual coupling correction factors for geometry using resonant tunable dipoles spaced 3 m apart ... 173
Table F.1 – Error budget ... 175
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereinafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be held responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 16-1-4 has been prepared by CISPR subcommittee A: Radio interference measurements and statistical methods.

The document CISPR/A/710/FDIS, circulated to the National Committees as amendment 3, led to the publication of the new edition.
The text of this standard is based on the first edition, its Amendment 1, Amendment 2 and the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR/A/710/FDIS</td>
<td>CISPR/A/722/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of CISPR 16 series, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, can be found on the IEC website.

CISPR 16-1 consists of the following parts, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods – Radio disturbance and immunity measuring apparatus*:

Part 1-1: Measuring apparatus
Part 1-2: Ancillary equipment – Conducted disturbances
Part 1-3: Ancillary equipment – Disturbance power
Part 1-4: Ancillary equipment – Radiated disturbances
Part 1-5: Antenna calibration test sites for 30 MHz to 1 000 MHz

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
1 Scope

This part of CISPR 16 is designated a basic standard, which specifies the characteristics and performance of equipment for the measurement of radiated disturbances in the frequency range 9 kHz to 18 GHz.

Specifications for ancillary apparatus are included for: antennas and test sites, TEM cells, and reverberating chambers.

The requirements of this publication must be complied with at all frequencies and for all levels of radiated disturbances within the CISPR indicating range of the measuring equipment.

Methods of measurement are covered in Part 2-3, and further information on radio disturbance is given in Part 3 of CISPR 16. Uncertainties, statistics and limit modelling are covered in Part 4 of CISPR 16.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports

CISPR 16-4 (all parts), Specification for radio disturbance and immunity measuring apparatus and methods – Uncertainties, statistics and limit modelling

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility