INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Radio interference characteristics of overhead power lines and high-voltage equipment –
Part 3: Code of practice for minimizing the generation of radio noise
Figure 3 – Line with conductors in a delta configuration .. 24
Figure 4 – Line with conductors in a triangular configuration ... 25
Figure 5 – Line with conductors in a flat configuration ... 26
Figure 6 – Line with conductors in a delta configuration .. 27
Figure 7 – Line with conductors in a triangular configuration ... 28
Figure 8 – Tubular conductors of 40 cm diameter ... 29
Figure B.1 – Designation of the geometrical quantities for the simplified analytical method ... 43
Figure B.2 – Lateral profiles of the radio noise field strengths produced by the individual phases and of the total field, as calculated in the given example .. 44

Table A.1 – Empirical methods, terms of the predetermination formulae developed by several institutions, survey ... 32
Table A.2 – Empirical methods, complete predetermination formulae developed by several institutions, survey ... 34
Table A.3 – Predetermination formulae, examples for calculation of the absolute field strength levels ... 36
INTERNATIONAL ELECTROTECHNICAL COMMISSION
INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

RADIO INTERFERENCE CHARACTERISTICS
OF OVERHEAD POWER LINES
AND HIGH-VOLTAGE EQUIPMENT –

Part 3: Code of practice for minimizing
the generation of radio noise

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

CISPR 18-3, which is a technical report, has been prepared by CISPR subcommittee B: Interference relating to industrial, scientific and medical radio-frequency apparatus, to other (heavy) industrial equipment, to overhead power lines, to high voltage equipment and to electric traction.

This second edition cancels and replaces the first edition published in 1986. It is a technical revision.
This edition includes the following significant technical changes with respect to the previous edition: while the first edition of CISPR 18-3 only covered recommendations for minimizing the generation of radio noise emanating from high-voltage (HV) power systems, this second edition now also covers a new clause providing formulae for predetermination of the radio noise field strength levels from HV overhead power lines with large conductor bundles. Furthermore, Annex A was accomplished with a collation of predetermination formulae developed and used by several institutions around the world. The tables also contain typical examples of radio noise field strength levels obtained during some measurements campaigns at several HV overhead power line constructions.

The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>DTR</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR/B/495/DTR</td>
<td>CISPR/B/503/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This technical report has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the CISPR 18 series can be found, under the general title *Radio interference characteristics of overhead power lines and high-voltage equipment*, on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under “http://webstore.iec.ch” in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
INTRODUCTION

This technical report forms the third of a three-part publication dealing with radio noise generated by electrical power transmission and distribution facilities (overhead lines and substations). It contains recommendations for minimizing the generation of radio noise emanating from high-voltage (HV) power systems which include, but are not restricted to, HVAC or HVDC overhead power lines, HVAC substations and HVDC converter stations, hardware, etc., in order to promoting protection of radio reception.

The recommendations given in this part 3 of the CISPR 18 series are intended to be a useful aid to engineers involved in design, erection and maintenance of overhead lines and HV stations and also to anyone concerned with checking the radio noise performance of a line to ensure satisfactory protection of radio reception. Information on the physical phenomena involved in the generation of electromagnetic noise fields is found in CISPR/TR 18-1. It also includes the main properties of such fields and their numerical values. CISPR/TR 18-2 contains recommendations for methods of measurement for use on-site or in a laboratory. It furthermore recommends procedures for determination of limits for the radio noise from HV power systems.

This second edition of CISPR 18-3 was adapted to the modern structure and content of technical reports issued by IEC. The first edition of CISPR 18-3 underwent thorough edition and adaptation to modern terminology. Furthermore its content was adjusted such as to allow for use of the lateral distance y for the conduction of measurements in the field.

The CISPR 18 series does not deal with biological effects on living matter or any issues related to exposure in electromagnetic fields.

The main content of this technical report is based on CISPR Rec. No. 57 given below:

CISPR RECOMMENDATION No. 57

CODE OF PRACTICE FOR MINIMIZING THE GENERATION OF RADIO NOISE

The CISPR

CONSIDERING

a) that the radiation of electromagnetic energy from overhead power lines causes interference to sound and television broadcasting,

b) that the level of this noise may be reduced by the design and lay-out of a line,

c) that when defects cause unusually high levels of interference there is need to detect and locate these faults,

RECOMMENDS

That the latest edition of CISPR Publication 18-3, including amendments, be used as guide for minimizing the generation of radio noise caused by overhead power lines.

CISPR/TR 18-1 describes the main properties of the physical phenomena involved in the production of disturbing electromagnetic fields by overhead lines and provides numerical values of such fields.

In CISPR/TR 18-2 methods of measurement and procedures for determining limits of such radio interference are recommended.

This CISPR/TR 18-3 forms a "Code of Practice" to reduce to a minimum the production of radio noise by power lines and equipment.
It provides information which is advisable to follow both when designing various fittings and components and when stringing the conductors and installing the hardware of the line.

It also describes methods of detecting and locating defects resulting in unusually high interference levels, and provides prevention and correction procedures that are generally simple to implement.

Lastly, this Part 3 provides formulae for predicting the most probable radio noise field of a line for various weather conditions, insofar as radio noise is caused by conductor corona.
1 Scope

This part of CISPR 18, which is a technical report, applies to radio noise from overhead power lines and high-voltage equipment which may cause interference to radio reception, excluding the fields from power line carrier signals.

The frequency range covered is 0,15 MHz to 300 MHz.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

CISPR/TR 18-1:2010, Radio interference characteristics of overhead power lines and high-voltage equipment – Part 1: Description of phenomena

CISPR/TR 18-2:2010, Radio interference characteristics of overhead power lines and high-voltage equipment – Part 2: Methods of measurement and procedure for determining limits

ISO/IEC Guide 99, International vocabulary of metrology – Basic and general concepts and associated terms (VIM)

NOTE Informative references are listed in the Bibliography.