Appareils de traitement de l'information –
Caractéristiques des perturbations radioélectriques –
Limites et méthodes de mesure

Information technology equipment –
Radio disturbance characteristics –
Limits and methods of measurement
SOMMAIRE

AVANT-PROPOS ..................................................................................................................8
INTRODUCTION ................................................................................................................12

1 Domaine d'application et objet ......................................................................................14
2 Références normatives .................................................................................................14
3 Définitions .................................................................................................................... 16
4 Classification des ATI ...................................................................................................18
   4.1 Appareils de classe B ..........................................................................................18
   4.2 Appareils de classe A ..........................................................................................20
5 Limites des perturbations conduites aux bornes d'alimentation et aux accès de télécommunication ...........................................................................................................20
   5.1 Limites de la tension perturbatrice aux bornes d'alimentation ...............................20
   5.2 Limites des perturbations conduites de mode commun (mode asymétrique) aux accès de télécommunication .......................................................... 22
6 Limites des perturbations rayonnées............................................................................22
7 Interprétation des limites des perturbations électromagnétiques spécifiées par le CISPR .......................................................................................................................... 24
   7.1 Signification d'une limite spécifiée par le CISPR ..................................................24
   7.2 Application des limites pour les essais de conformité des appareils produits en série .........................................................................................................................24
8 Conditions générales de mesure...................................................................................26
   8.1 Bruit ambiant .......................................................................................................26
   8.2 Disposition générale ............................................................................................28
   8.3 Disposition de l'appareil en essai.........................................................................32
   8.4 Fonctionnement de l'appareil en essai .................................................................36
9 Méthode de mesure des perturbations conduites aux bornes d'alimentation et aux accès de télécommunication .........................................................................................40
   9.1 Détecteurs de mesure .........................................................................................40
   9.2 Récepteurs de mesure .........................................................................................40
   9.3 Réseau fictif d'alimentation ..................................................................................42
   9.4 Plan de masse de référence ................................................................................42
   9.5 Disposition de l'appareil en essai ................................................................. 42
   9.6 Mesure des perturbations aux accès de télécommunication .................................48
   9.7 Enregistrement des mesures .............................................................................54
10 Méthode de mesure des perturbations rayonnées .........................................................54
   10.1 Détecteurs de mesure .......................................................................................54
   10.2 Récepteurs de mesure .......................................................................................56
   10.3 Antenne ..............................................................................................................56
   10.4 Emplacement d'essai pour les mesures .............................................................56
   10.5 Disposition de l'appareil en essai ..................................................................58
   10.6 Enregistrement des mesures ...........................................................................60
   10.7 Mesure en présence de signaux ambients élevés .............................................60
   10.8 Essai sur les lieux d'utilisation .........................................................................60
11 Incertitude de mesure .................................................................................................62
## CONTENTS

**FOREWORD** ....................................................................................................................... 9  
**INTRODUCTION** ................................................................................................................ 13  

1 Scope and object.......................................................................................................... 15  
2 Normative references ................................................................................................... 15  
3 Definitions .................................................................................................................... 17  
4 Classification of ITE ..................................................................................................... 19  
   4.1 Class B ITE .........................................................................................................19  
   4.2 Class A ITE .........................................................................................................21  
5 Limits for conducted disturbance at mains terminals and telecommunication ports........ 21  
   5.1 Limits of mains terminal disturbance voltage ........................................................21  
   5.2 Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports ................................................................................. 23  
6 Limits for radiated disturbance...................................................................................... 23  
7 Interpretation of CISPR radio disturbance limit.............................................................. 25  
   7.1 Significance of a CISPR limit ...............................................................................25  
   7.2 Application of limits in tests for conformity of equipment in series production........ 25  
8 General measurement conditions.................................................................................. 27  
   8.1 Ambient noise .....................................................................................................27  
   8.2 General arrangement........................................................................................... 29  
   8.3 EUT arrangement ................................................................................................33  
   8.4 Operation of the EUT...........................................................................................37  
9 Method of measurement of conducted disturbance at mains terminals and telecommunication ports............................................................................................... 41  
   9.1 Measurement detectors .......................................................................................41  
   9.2 Measuring receivers ............................................................................................41  
   9.3 Artificial mains network (AMN) ...........................................................................43  
   9.4 Ground reference plane ......................................................................................43  
   9.5 EUT arrangement ................................................................................................43  
   9.6 Measurement of disturbances at telecommunication ports ....................................49  
   9.7 Recording of measurements ................................................................................55  
10 Method of measurement of radiated disturbance ........................................................... 55  
   10.1 Measurement detectors .......................................................................................55  
   10.2 Measuring receivers ............................................................................................57  
   10.3 Antenna ..............................................................................................................57  
   10.4 Measurement site ................................................................................................57  
   10.5 EUT arrangement ................................................................................................59  
   10.6 Recording of measurements ...............................................................................61  
   10.7 Measurement in the presence of high ambient signals ........................................ 61  
   10.8 User installation testing .......................................................................................61  
11 Measurement uncertainty ............................................................................................. 63
Annexe A (normative) Mesures d'atténuation pour d'autres emplacements possibles.........82
Annexe B (normative) Arbre de décision pour les mesures avec un détecteur de crête ......94
Annexe C (normative) Configurations d'essai possibles pour la mesure des perturbations de mode commun.................................................................96
Annexe D (informative) Schémas de principe d'exemples de réseaux de stabilisation d'impédance (RSI).................................................................110
Annexe E (informative) Paramètres des signaux aux accès de télécommunication........128
Annexe F (informative) Justifications relatives aux mesures des perturbations et leurs méthodes sur les accès de télécommunication..........................134

Bibliographie.............................................................................................................148

Figure 1 – Emplacement d'essai .........................................................................................62
Figure 2 – Caractéristiques minimales d'un autre emplacement d'essai .........................64
Figure 3 – Dimensions minimales du plan de masse métallique.................................64
Figure 4 – Configuration d'essai: appareils sur table (mesures en conduction) ..........66
Figure 5 – Autre configuration d'essai: appareils sur table (mesures en conduction) ....68
Figure 6 – Autre configuration d'essai: appareils sur table (mesures en conduction) – Vue de dessus.........................................................68
Figure 7 – Configuration d'essai: appareils sur table (mesure en conduction sur un emplacement d'essai pour les mesures de rayonnement).........................70
Figure 8 – Configuration d'essai: appareils disposés à même le sol (mesures en conduction) .............................................................72
Figure 9 – Configuration d'essai: appareils disposés à même le sol et appareils sur table (mesures conduites) .......................................74
Figure 10 – Configuration d'essai: appareils sur table (mesure de rayonnement) ........74
Figure 11 – Configuration d'essai: appareils disposés à même le sol (mesure de rayonnement) .............................................................76
Figure 12 – Configuration d'essai: appareils disposés à même le sol et appareils sur table (mesure de rayonnement) .......................78
Figure 13 – Configuration d'essai: appareils disposés à même le sol (câbles aériens, vue de côté) .............................................................80
Figure A.1 – Positions typiques d'antenne pour les mesures d'ANE d'autres emplacements d'essai.................................................................88
Figure A.2 – Positions des antennes pour les mesures d'autres emplacements d'essai pour le volume minimal recommandé.........................90
Figure B.1 – Arbre de décision pour les mesures avec un détecteur de crête............94
Figure C.1 – Utilisation du RCD décrit dans la CEI 61000-4-6 en tant que RCD/RSI ....98
Figure C.2 – Utilisation d'une charge de 150 Ω sur la surface extérieure du blindage («RCD/RSI sur site»)......................................................100
Figure C.3 – Combinaison d'une sonde de courant et d'une sonde de tension capacitve .................................................................100
Figure C.4 – Utilisation d'aucune connexion au blindage et d'aucun RSI ....................102
Figure C.5 – Dispositif d'étalonnage.............................................................................106
Figure C.6 – Logigramme pour la sélection de la méthode d'essai .........................108
Figure D.1 – RSI pour une paire symétrique non blindée ........................................110
Annex A (normative) Site attenuation measurements of alternative test sites ......................83
Annex B (normative) Decision tree for peak detector measurements ...................................95
Annex C (normative) Possible test set-ups for common mode measurements .................97
Annex D (informative) Schematic diagrams of examples of impedance stabilization networks (ISN) .................................................................111
Annex E (informative) Parameters of signals at telecommunication ports ......................129
Annex F (informative) Rationale for disturbance measurements and methods ................135

Bibliography ......................................................................................................................149

Figure 1 – Test site...........................................................................................................63
Figure 2 – Minimum alternative measurement site ..........................................................65
Figure 3 – Minimum size of metal ground plane .............................................................65
Figure 4 – Test configuration: tabletop equipment (conducted measurement) .................67
Figure 5 – Alternative test configuration: tabletop equipment (conducted measurement) ....69
Figure 6 – Alternative test configuration: tabletop equipment (conducted measurement) – Plan view......................................................................................................................69
Figure 7 – Test configuration: tabletop equipment (conducted measurement on a radiated test site)..............................................................................................................71
Figure 8 – Test configuration: floor-standing equipment (conducted measurement) .........73
Figure 9 – Test configuration: floor-standing and table-top equipment (conducted measurement) ...................................................................................................................75
Figure 10 – Test configuration: table-top equipment (radiated measurement) .................75
Figure 11 – Test configuration: floor-standing equipment (radiated measurement) ..........77
Figure 12 – Test configuration: floor-standing and table-top equipment (radiated measurement) ....................................................................................................................79
Figure 13 – Test configuration: floor-standing equipment (overhead cables, side view) ....81
Figure A.1 – Typical antenna positions for alternate site NSA measurements .................89
Figure A.2 – Antenna positions for alternate site measurements for minimum recommended volume .................................................................91
Figure B.1 – Decision tree for peak detector measurements ...........................................95
Figure C.1 – Using CDNs described in IEC 61000-4-6 as CDN/ISNs ...............................99
Figure C.2 – Using a 150 Ω load to the outside surface of the shield ("in situ CDN/ISN") ....101
Figure C.3 – Using a combination of current probe and capacitive voltage probe ...........101
Figure C.4 – Using no shield connection to ground and no ISN ........................................103
Figure C.5 – Calibration fixture .....................................................................................107
Figure C.6 – Flowchart for selecting test method .............................................................109
Figure D.1 – ISN for use with unscreened single balanced pairs .....................................111
Figure D.2 – RSI avec un affaiblissement de conversion longitudinal (ACL) élevé pour une ou deux paires symétriques non blindées ..........................................................112
Figure D.3 – RSI avec un affaiblissement de conversion longitudinal (ACL) élevé pour une, deux, trois ou quatre paires symétriques non blindées ................................................114
Figure D.4 – RSI, comportant un réseau d’adaptation de source 50 Ω à l’accès de mesure en tension, pour deux paires symétriques non blindées ................................................116
Figure D.5 – RSI pour deux paires symétriques non blindées ................................................118
Figure D.6 – RSI, comportant un réseau d’adaptation de source 50 Ω à l’accès de mesure en tension, pour quatre paires symétriques non blindées ................................................120
Figure D.7 – RSI pour quatre paires symétriques non blindées .............................................122
Figure D.8 – RSI pour câbles coaxiaux, utilisant une inductance interne de mode commun constituée par un enroulement bifilaire d’un conducteur central isolé et d’un fil du conducteur de blindage isolé, sur un noyau magnétique commun (par exemple un tore de ferrite) .................................................................122
Figure D.9 – RSI pour câbles coaxiaux, utilisant une inductance interne de mode commun constituée par un câble coaxial miniature (miniature semi-rigide avec fil du conducteur de blindage en cuivre plein ou miniature avec fil du conducteur de blindage à double tresse) enroulé sur des tores de ferrite ............................................................................................................124
Figure D.10 – RSI pour câbles blindés multi-conducteurs, utilisant une inductance interne de mode commun constituée par un enroulement bifilaire des fils de signaux isolés et du fil du conducteur de blindage isolé, sur un noyau magnétique commun (par exemple un tore de ferrite) .................................................................124
Figure D.11 – RSI pour câbles blindés multi-conducteurs, utilisant une inductance de mode commun constituée en enroulant un câble blindé multi-conducteurs sur des tores de ferrite .............................................................................................................126
Figure F.1 – Circuit de base pour la considération des limites avec une impédance TCM définie de 150 Ω ...............................................................................................................140
Figure F.2 – Circuit de base pour la mesure avec une impédance TCM inconnue .................140
Figure F.3 – Montage d’impédance des composants utilisés à la Figure C.2 .........................144
Figure F.4 – Montage d’essai de base pour mesurer l’impédance combinée de la charge de 150 Ω et des ferrites ..................................................................................................................146

Tableau 1 – Limites des perturbations conduites aux bornes d’alimentation pour les ATI de classe A ..................................................................................................................20
Tableau 2 – Limites des perturbations conduites aux bornes d’alimentation pour les ATI de classe B ..................................................................................................................22
Tableau 3 – Limites des perturbations conduites de mode commun (mode asymétrique) aux accès de télécommunication dans la gamme des fréquences comprises entre 0,15 MHz et 30 MHz pour les appareils de classe A ..................................................................................................................22
Tableau 4 – Limites des perturbations conduites de mode commun (mode asymétrique) aux accès de télécommunication dans la gamme des fréquences comprises entre 0,15 MHz et 30 MHz pour les appareils de classe B ..................................................................................................................22
Tableau 5 – Limites des perturbations rayonnées à une distance d’essai de 10 m pour les ATI de classe A ..................................................................................................................24
Tableau 6 – Limites des perturbations rayonnées à une distance d’essai de 10 m pour les ATI de classe B ..................................................................................................................24
Tableau 7 – Acronymes utilisés dans les figures ........................................................................62
Tableau A.1 – Atténuation normalisée de l’emplacement (AN (dB)) pour les géométries recommandées avec des antennes à large bande ..................................................................................................................86
Tableau F.1 – Résumé des avantages et des inconvénients des méthodes décrites en Annexe C ..................................................................................................................136
Figure D.2 – ISN with high longitudinal conversion loss (LCL) for use with either one or two unscreened balanced pairs

Figure D.3 – ISN with high longitudinal conversion loss (LCL) for use with one, two, three, or four unscreened balanced pairs

Figure D.4 – ISN, including a 50 Ω source matching network at the voltage measuring port, for use with two unscreened balanced pairs

Figure D.5 – ISN for use with two unscreened balanced pairs

Figure D.6 – ISN, including a 50 Ω source matching network at the voltage measuring port, for use with four unscreened balanced pairs

Figure D.7 – ISN for use with four unscreened balanced pairs

Figure D.8 – ISN for use with coaxial cables, employing an internal common mode choke created by bifilar winding an insulated centre-conductor wire and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid)

Figure D.9 – ISN for use with coaxial cables, employing an internal common mode choke created by miniature coaxial cable (miniature semi-rigid solid copper screen or miniature double-braided screen coaxial cable) wound on ferrite toroids

Figure D.10 – ISN for use with multi-conductor screened cables, employing an internal common mode choke created by bifilar winding multiple insulated signal wires and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid)

Figure D.11 – ISN for use with multi-conductor screened cables, employing an internal common mode choke created by winding a multi-conductor screened cable on ferrite toroids

Figure F.1 – Basic circuit for considering the limits with defined TCM impedance of 150 Ω

Figure F.2 – Basic circuit for the measurement with unknown TCM impedance

Figure F.3 – Impedance layout of the components used in Figure C.2

Figure F.4 – Basic test set-up to measure combined impedance of the 150 Ω and ferrites

Table 1 – Limits for conducted disturbance at the mains ports of class A ITE

Table 2 – Limits for conducted disturbance at the mains ports of class B ITE

Table 3 – Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class A equipment

Table 4 – Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class B equipment

Table 5 – Limits for radiated disturbance of class A ITE at a measuring distance of 10 m

Table 6 – Limits for radiated disturbance of class B ITE at a measuring distance of 10 m

Table 7 – Acronyms used in figures

Table A.1 – Normalized site attenuation (AN (dB)) for recommended geometries with broadband antennas

Table F.1 – Summary of advantages and disadvantages of the methods described in Annex C
AVANT-PROPOS

1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondent doivent être indiquées en termes clairs dans ces dernières.

5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.

6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CISPR 22 a été établie par le sous-comité I du CISPR: Compatibilité électromagnétique des matériels de traitement de l’information, multimedia et récepteurs.


Les documents CISPR/1135A/FDIS et CISPR/1136/FDIS, circulés auprès des Comités nationaux de la CEI comme amendements 2 et 3 respectivement, ont conduit à la publication de la nouvelle édition.
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 22 has been prepared by CISPR subcommittee I: Electromagnetic compatibility of information technology equipment, multimedia equipment and receivers.


The documents CISPR/I/135A/FDIS and CISPR/I/136/FDIS, circulated to the National Committees as Amendments 2 and 3 respectively, led to the publication of the new edition.
Le texte de cette norme est issu de la quatrième édition, de l’amendement 1 et des documents suivants :

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR/II/135A/FDIS</td>
<td>CISPR/II/148/RVD</td>
</tr>
<tr>
<td>CISPR/II/136/FDIS</td>
<td>CISPR/II/147/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l’approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les données relatives à la publication recherchée. À cette date, la publication sera

• reconduite;
• supprimée;
• remplacée par une édition révisée, ou
• amendée.
The text of this standard is based on the fourth edition, amendment 1 and the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR/I/135A/FDIS</td>
<td>CISPR/I/148/RVD</td>
</tr>
<tr>
<td>CISPR/I/136/FDIS</td>
<td>CISPR/I/147/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
INTRODUCTION

Le domaine d'application a été étendu à l'ensemble du spectre radioélectrique de 9 kHz à 400 GHz, mais les limites ne sont spécifiées que sur une partie de ce spectre. Ceci a été considéré comme suffisant pour définir des niveaux d'émission convenables afin de protéger la radiodiffusion et les autres services de télécommunication et afin de permettre aux autres appareils de fonctionner comme prévu lorsqu'ils sont placés à une distance raisonnable.
INTRODUCTION

The scope is extended to the whole radio-frequency range from 9 kHz to 400 GHz, but limits are formulated only in restricted frequency bands, which is considered sufficient to reach adequate emission levels to protect radio broadcast and telecommunication services, and to allow other apparatus to operate as intended at reasonable distance.
APPAREILS DE TRAITEMENT DE L'INFORMATION –
CARACTÉRISTIQUES DES PERTURBATIONS RADIOÉLECTRIQUES –
LIMITES ET MÉTHODES DE MESURE

1 Domaine d'application et objet

La présente Norme internationale est applicable aux ATI définis en 3.1.

Des procédures sont indiquées pour la mesure des niveaux des signaux parasites engendrés par les ATI; les limites sont spéciﬁées pour la gamme de fréquence de 9 kHz à 400 GHz et concernent aussi bien les appareils de classe A que ceux de classe B. Il n'est pas nécessaire d'effectuer de mesure aux fréquences pour lesquelles aucune limite n'est spéciﬁée.

L'objet de la présente publication est d'établir des exigences uniformes pour les limites des perturbations radioélectriques des appareils relevant du domaine d'application, de ﬁxer des limites pour le niveau perturbateur, de décrire des méthodes de mesure et de normaliser les conditions de fonctionnement et l'interprétation des résultats.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60083:1997, Prises de courant pour usages domestiques et analogues, normalisées par les pays membres de la CEI

CEI 61000-4-6:2003, Compatibilité électromagnétique (CEM) – Partie 4-6: Techniques d'essai et de mesure – Immunité aux perturbations conduites, induites par les champs radioélectriques

CISPR 11:2003, Appareils industriels, scientiﬁques et médicaux (ISM) à fréquence radioélectrique – Caractéristiques de perturbations électromagnétiques – Limites et méthodes de mesure

CISPR 13:2001, Récepteurs de radiodiffusion et de télévision et équipements associés – Caractéristiques des perturbations radioélectriques – Limites et méthodes de mesure

CISPR 16-1-1:2003, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-1: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Appareils de mesure


Amendement 1 (2004)

________________

1 Il existe une édition consolidée 1.1 (2004) comprenant l'édition 1.0 et son amendement.
1 Scope and object

This International Standard applies to ITE as defined in 3.1.

Procedures are given for the measurement of the levels of spurious signals generated by the ITE and limits are specified for the frequency range 9 kHz to 400 GHz for both class A and class B equipment. No measurements need be performed at frequencies where no limits are specified.

The intention of this publication is to establish uniform requirements for the radio disturbance level of the equipment contained in the scope, to fix limits of disturbance, to describe methods of measurement and to standardize operating conditions and interpretation of results.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60083:1997, Plugs and socket-outlets for domestic and similar general use standardized in member countries of IEC

IEC 61000-4-6:2003, Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

CISPR 11:2003, Industrial, scientific, and medical (ISM) radio-frequency equipment – Electromagnetic disturbance characteristics – Limits and methods of measurement


3 Définitions

Pour les besoins du présent document, les définitions suivantes s’appliquent:

3.1 appareils de traitement de l’information (ATI)

Appareils:

a) qui ont comme fonction principale une ou plusieurs des fonctions suivantes: saisie, archivage, affichage, recherche, transmission, traitement, commutations ou commande de données et de messages de télécommunication, et pouvant être équipés d’un ou de plusieurs accès destinés typiquement au transfert de l’information;

b) qui ont une tension d’alimentation assignée ne dépassant pas 600 V.

Cela comprend par exemple les appareils de traitement de données, les machines de bureau, les appareils électroniques professionnels et les appareils de télécommunication.

Les appareils (ou les parties des appareils) dont la fonction principale est l’émission et/ou la réception radioélectrique, conformément au Règlement des Radiocommunications de l’UIT, sont exclus du domaine d’application de cette publication.

NOTE Il convient que tout appareil qui possède une fonction d’émission et/ou de réception radioélectrique, conformément aux définitions du Règlement des Radiocommunications de l’UIT soit conforme aux règlements nationaux pour les radiocommunications, que la présente publication soit également applicable ou non.

Les appareils pour lesquels toutes les exigences d’émission radioélectrique dans la bande de fréquences considérée sont explicitement spécifiées dans d’autres publications de la CEI ou du CISPR sont exclus du domaine d’application de cette publication.

3.2 appareil en essai

ATI représentatif ou groupe d’ATI fonctionnellement interactifs (système) comprenant une ou plusieurs unités principales et utilisé dans le but d’être évalué.

3.3 unité principale

partie d’un système ou unité d’un ATI qui assure le logement mécanique des modules, peut contenir des sources de radiofréquences et peut distribuer l’énergie à d’autres ATI. Les distributions d’énergie entre la ou les unités principales et les modules ou autres ATI peuvent être effectuées soit en courant alternatif, soit en courant continu, soit les deux.

3.4 module

partie d’un ATI qui assure une fonction et peut contenir des sources de radiofréquences.

3.5 ATI et modules identiques

modules et ATI produits en série et avec des tolérances de fabrication normales conformément à une spécification de fabrication déterminée.
CISPR 22 © IEC:2005

3 Definitions

For the purposes of this document the following definitions apply:

3.1 information technology equipment (ITE)

any equipment:

a) which has a primary function of either (or a combination of) entry, storage, display, retrieval, transmission, processing, switching, or control, of data and of telecommunication messages and which may be equipped with one or more terminal ports typically operated for information transfer;

b) with a rated supply voltage not exceeding 600 V.

It includes, for example, data processing equipment, office machines, electronic business equipment and telecommunication equipment.

Any equipment (or part of the ITE equipment) which has a primary function of radio transmission and/or reception according to the ITU Radio Regulations are excluded from the scope of this publication.

NOTE Any equipment which has a function of radio transmission and/or reception according to the definitions of the ITU Radio Regulations should fulfil the national radio regulations, whether or not this publication is also valid.

Equipment, for which all disturbance requirements in the frequency range are explicitly formulated in other IEC or CISPR publications, are excluded from the scope of this publication.

3.2 equipment under test (EUT)

representative ITE or functionally interactive group of ITE (system) which includes one or more host unit(s) and is used for evaluation purposes.

3.3 host unit

part of an ITE system or unit that provides the mechanical housing for modules, which may contain radio-frequency sources, and may provide power distribution to other ITE. Power distribution may be a.c., d.c., or both between the host unit(s) and modules or other ITE.

3.4 module

part of an ITE which provides a function and may contain radio-frequency sources.

3.5 identical modules and ITE

modules and ITE produced in quantity and within normal manufacturing tolerances to a given manufacturing specification.


withdrawn