CONTENTS

FOREWORD ... 9
INTRODUCTION ... 13
1 Scope and object .. 15
2 Normative references .. 15
3 Definitions .. 17
4 Classification of ITE .. 21
4.1 Class B ITE ... 21
4.2 Class A ITE ... 21
5 Limits for conducted disturbance at mains terminals and telecommunication ports 21
5.1 Limits of mains terminal disturbance voltage .. 23
5.2 Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports ... 23
6 Limits for radiated disturbance .. 25
6.1 Limits below 1 GHz .. 25
6.2 Limits above 1 GHz ... 27
7 Interpretation of CISPR radio disturbance limit ... 29
7.1 Significance of a CISPR limit ... 29
7.2 Application of limits in tests for conformity of equipment in series production 29
8 General measurement conditions .. 31
8.1 Ambient noise .. 31
8.2 General arrangement ... 31
8.3 EUT arrangement .. 37
8.4 Operation of the EUT ... 41
9 Method of measurement of conducted disturbance at mains terminals and telecommunication ports .. 43
9.1 Measurement detectors ... 43
9.2 Measuring receivers ... 45
9.3 Artificial mains network (AMN) ... 45
9.4 Ground reference plane ... 45
9.5 EUT arrangement .. 45
9.6 Measurement of disturbances at telecommunication ports 51
9.7 Recording of measurements .. 57
10 Method of measurement of radiated disturbance ... 59
10.1 Measurement detectors ... 59
10.2 Measuring receiver below 1 GHz ... 59
10.3 Antenna below 1 GHz .. 59
10.4 Measurement site below 1 GHz .. 61
10.5 EUT arrangement below 1 GHz .. 63
10.6 Radiated emission measurements above 1 GHz .. 63
10.7 Recording of measurements .. 65
10.8 Measurement in the presence of high ambient signals .. 65
10.9 User installation testing ... 65
11 Measurement uncertainty .. 67
Figure D.3 – ISN with high longitudinal conversion loss (LCL) for use with one, two, three, or four unscreened balanced pairs ... 119
Figure D.4 – ISN, including a 50 Ω source matching network at the voltage measuring port, for use with two unscreened balanced pairs ... 121
Figure D.5 – ISN for use with two unscreened balanced pairs .. 123
Figure D.6 – ISN, including a 50 Ω source matching network at the voltage measuring port, for use with four unscreened balanced pairs ... 125
Figure D.7 – ISN for use with four unscreened balanced pairs .. 127
Figure D.8 – ISN for use with coaxial cables, employing an internal common mode choke created by bifilar winding an insulated centre-conductor wire and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid) .. 127
Figure D.9 – ISN for use with coaxial cables, employing an internal common mode choke created by miniature coaxial cable (miniature semi-rigid solid copper screen or miniature double-braided screen coaxial cable) wound on ferrite toroids .. 129
Figure D.10 – ISN for use with multi-conductor screened cables, employing an internal common mode choke created by bifilar winding multiple insulated signal wires and an insulated screen-conductor wire on a common magnetic core (for example, a ferrite toroid) .. 129
Figure D.11 – ISN for use with multi-conductor screened cables, employing an internal common mode choke created by winding a multi-conductor screened cable on ferrite toroids .. 131
Figure F.1 – Basic circuit for considering the limits with defined TCM impedance of 150 Ω .. 145
Figure F.2 – Basic circuit for the measurement with unknown TCM impedance .. 145
Figure F.3 – Impedance layout of the components used in Figure C.2 .. 149
Figure F.4 – Basic test set-up to measure combined impedance of the 150 Ω and ferrites ... 151

Table 1 – Limits for conducted disturbance at the mains ports of class A ITE .. 23
Table 2 – Limits for conducted disturbance at the mains ports of class B ITE .. 23
Table 3 – Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0,15 MHz to 30 MHz for class A equipment .. 23
Table 4 – Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0,15 MHz to 30 MHz for class B equipment .. 25
Table 5 – Limits for radiated disturbance of class A ITE at a measuring distance of 10 m .. 25
Table 6 – Limits for radiated disturbance of class B ITE at a measuring distance of 10 m .. 25
Table 7 – Acronyms used in figures .. 67
Table 8 – Limits for radiated disturbance of Class A ITE at a measurement distance of 3 m .. 27
Table 9 – Limits for radiated disturbance of Class B ITE at a measurement distance of 3 m .. 27
Table A.1 – Normalized site attenuation (\(A_N\) (dB)) for recommended geometries with broadband antennas .. 91
Table F.1 – Summary of advantages and disadvantages of the methods described in Annex C .. 141
INTERNATIONAL ELECTROTECHNICAL COMMISSION
INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

INFORMATION TECHNOLOGY EQUIPMENT –
RADIO DISTURBANCE CHARACTERISTICS –
LIMITS AND METHODS OF MEASUREMENT

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 22 has been prepared by CISPR subcommittee I:
Electromagnetic compatibility of information technology equipment, multimedia equipment and receivers.

The technical content is therefore identical to the base edition and its amendments and has been prepared for user convenience.

It bears the edition number 5.2.
A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
INTRODUCTION

The scope is extended to the whole radio-frequency range from 9 kHz to 400 GHz, but limits are formulated only in restricted frequency bands, which is considered sufficient to reach adequate emission levels to protect radio broadcast and telecommunication services, and to allow other apparatus to operate as intended at reasonable distance.
INFORMATION TECHNOLOGY EQUIPMENT –
RADIO DISTURBANCE CHARACTERISTICS –
LIMITS AND METHODS OF MEASUREMENT

1 Scope and object

This International Standard applies to ITE as defined in 3.1.

Procedures are given for the measurement of the levels of spurious signals generated by the ITE and limits are specified for the frequency range 9 kHz to 400 GHz for both class A and class B equipment. No measurements need be performed at frequencies where no limits are specified.

The intention of this publication is to establish uniform requirements for the radio disturbance level of the equipment contained in the scope, to fix limits of disturbance, to describe methods of measurement and to standardize operating conditions and interpretation of results.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60083:1997, Plugs and socket-outlets for domestic and similar general use standardized in member countries of IEC

IEC 61000-4-6:2003, Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

CISPR 11:2003, Industrial, scientific, and medical (ISM) radio-frequency equipment – Electromagnetic disturbance characteristics – Limits and methods of measurement

Amendment 1 (2004)

Amendment 1 (2005)