TECHNICAL SPECIFICATION

IEC

TS 60034-25

First edition
2004-04

Rotating electrical machines –

Part 25:
Guide for the design and performance of cage induction motors specifically designed for converter supply

© IEC 2004 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

PRICE CODE X

For price, see current catalogue
CONTENTS

FOREWORD ... 5
INTRODUCTION .. 7

1 Scope ... 8
2 Normative references .. 8
3 Terms and definitions .. 9
4 System characteristics .. 10
 4.1 General ... 10
 4.2 System information ... 10
 4.3 Torque/speed considerations ... 10
 4.3.1 General ... 10
 4.3.2 Torque/speed capability ... 11
 4.3.3 Voltage/speed characteristics ... 12
 4.3.4 Limiting factors on torque/speed capability ... 12
 4.3.5 Resonant speed bands .. 13
 4.3.6 Duty cycles .. 13
 4.4 Converter control types ... 13
 4.4.1 General ... 13
 4.4.2 Converter type considerations .. 14
 4.5 Converter output voltage generation ... 15
 4.5.1 Pulse Width Modulation (PWM) ... 15
 4.5.2 Hysteresis (sliding mode) .. 15
 4.5.3 Influence of switching frequency ... 16
 4.5.4 Multi-level converters ... 17
 4.6 Motor requirements .. 17
 5 Losses and their effects ... 19
 5.1 General ... 19
 5.2 Losses in motors supplied from voltage-source converters .. 19
 5.3 Location of the extra losses and ways to reduce them .. 20
 5.4 Converter features to reduce the motor losses .. 20
 5.5 Temperature and life expectancy ... 21
 5.6 Determination of motor efficiency ... 21
 6 Noise, vibration and oscillating torques ... 21
 6.1 Noise and vibration in an induction motor supplied from a converter 21
 6.1.1 General ... 21
 6.1.2 Changes in noise emission due to changes in speed ... 22
 6.1.3 Magnetically excited noise ... 23
 6.1.4 Torsional oscillation .. 23
 6.2 Sound power level determination and limits ... 24
 6.2.1 Methods of measurement ... 24
 6.2.2 Test conditions .. 24
 6.2.3 Sound power level limits .. 24
 6.3 Vibration level determination and limits ... 24
 6.3.1 Method of measurement ... 24
 6.3.2 Test conditions .. 25
 6.3.3 Vibration level limits ... 25
7 Motor insulation electrical stresses ... 25
 7.1 General ... 25
 7.2 Causes .. 25
 7.3 Winding electrical stress ... 27
 7.4 Insulation stress limitation .. 29
 7.5 Responsibilities ... 29
 7.6 Converter characteristics ... 30
 7.7 Methods of reduction of voltage stress ... 30
 7.8 Motor choice .. 31

8 Bearing currents ... 31
 8.1 Sources of bearing currents in converter-fed motors 31
 8.1.1 General ... 31
 8.1.2 Magnetic asymmetry ... 31
 8.1.3 Electrostatic buildup ... 32
 8.1.4 High frequency voltages ... 32
 8.2 Generation of high frequency bearing currents ... 32
 8.2.1 General ... 32
 8.2.2 Circulating current ... 33
 8.2.3 Shaft grounding current ... 33
 8.2.4 Capacitive discharge current ... 33
 8.3 Common-mode circuit .. 33
 8.3.1 General ... 33
 8.3.2 System common-mode current flow ... 33
 8.4 Stray capacitances .. 34
 8.4.1 General ... 34
 8.4.2 Major component of capacitance .. 34
 8.4.3 Other capacitances ... 35
 8.5 Consequences of excessive bearing currents .. 35
 8.6 Preventing high frequency bearing current damage 36
 8.6.1 Basic approaches ... 36
 8.6.2 Other preventive measures ... 36

9 Installation ... 38
 9.1 Grounding, bonding and cabling ... 38
 9.1.1 General ... 38
 9.1.2 Grounding ... 38
 9.1.3 Bonding of motors ... 39
 9.1.4 Motor power cables .. 39
 9.2 Reactors and filters ... 44
 9.2.1 General ... 44
 9.2.2 Output reactors .. 44
 9.2.3 Voltage limiting filter (dv/dt filter) .. 44
 9.2.4 Sinusoidal filter ... 44
 9.2.5 Motor termination unit .. 44

Annex A (informative) Converter output spectra ... 46

Bibliography ... 48
Figure 1 – Component parts of a PDS
Figure 2 – Torque/speed capability
Figure 3 – Converter output current
Figure 4 – Converter output voltage
Figure 5 – Effects of switching frequency on motor and converter losses
Figure 6 – Effects of switching frequency on acoustic noise
Figure 7 – Effects of switching frequency on torque ripple
Figure 8 – Example of measured losses W, as a function of frequency f and supply type
Figure 9 – Additional losses ΔW of a motor (same motor as Figure 8) due to converter supply, as a function of pulse frequency f_p, at 50 Hz rotational frequency
Figure 10 – Fan noise as a function of fan speed
Figure 11 – Typical surges at the terminals of a motor fed from a PWM converter
Figure 12 – Typical voltage surges on one phase at the converter and at the motor terminals (2 ms/division)
Figure 13 – Individual short rise time surge from Figure 12 (1 μs/division)
Figure 14 – Definition of the peak rise time t_r of the voltage at the motor terminals
Figure 15 – First turn voltage as a function of the surge rise time
Figure 16 – Discharge pulse occurring as a result of converter generated voltage surge at motor terminals (100 ns/division)
Figure 17 – Limiting curves of impulse voltage V_{pk}, measured between two motor phase terminals, as a function of the impulse rise time t_r
Figure 18 – Possible bearing currents
Figure 19 – Motor capacitances
Figure 20 – Bearing pitting due to electrical discharge (pit diameter 30 μm to 50 μm)
Figure 21 – Fluting due to excessive bearing current
Figure 22 – Bonding strap from motor terminal box to motor frame
Figure 23 – Examples of shielded motor cables and connections
Figure 24 – Parallel symmetrical cabling of high-power converter and motor
Figure 25 – Converter connections with 360° HF cable glands, showing the ‘Faraday Cage’
Figure 26 – Motor end termination with 360° connection
Figure 27 – Cable shield connection
Figure 28 – Characteristics of preventative measures
Figure A.1 – Typical frequency spectra of converter output voltage of a) constant frequency PWM control and b) hysteresis control
Figure A.2 – Typical frequency spectra of converter output voltage of a) random PWM control and b) hysteresis control
Figure A.3 – Typical time characteristics of motor current of a) constant frequency PWM control and b) hysteresis control
Table 1 – Significant factors affecting torque/speed capability
Table 2 – Motor design considerations
Table 3 – Motor parameters
Table 4 – Sound power level as a function of output power
Table 5 – Effectiveness of bearing current countermeasures
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ROTATING ELECTRICAL MACHINES –

Part 25: Guide for the design and performance of cage induction motors specifically designed for converter supply

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees, and IEC National Committees interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- The subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC 60034-25, which is a technical specification, has been prepared by IEC technical committee 2: Rotating machinery.
The text of this technical specification is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1271/DTR</td>
<td>2/1288/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until 2007. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual edition of this Technical Specification may be issued at a later date.
INTRODUCTION

This introduction is intended to explain the aim of this part of IEC 60034.

Motor categories

There are 2 categories of cage induction motors, which can be applied in variable speed electric drive systems.

- Standard cage induction motors, designed for general purpose application. The design and performance of these motors are optimized for operation on a fixed-frequency sinusoidal supply. Nevertheless they are generally also appropriate for use in variable speed drive systems.

 Guidance on this field of application is given in IEC 60034-17.

- Cage induction motors specifically designed for converter operation. The design and construction of such motors may be based on standard motors with standardized frame sizes and dimensions, but with modifications for converter operation.

 This category is covered by this part of IEC 60034, and it is recommended that the motor be marked with a reference to this part of IEC 60034.

Motors for converter supplies greater than 1 000 V, or for converters other than voltage source, will be considered in later editions of this part of IEC 60034.

Incorporation of the motor into the power drive system

Figure 1 illustrates the Power Drive System (PDS). A PDS consists of a motor and a Complete Drive Module (CDM). It does not include the equipment driven by the motor. The CDM consists of a Basic Drive Module (BDM) and its possible extensions such as the feeding section or some auxiliaries (for example ventilation). The BDM contains converter, control and self-protection functions. The rating and performance of the complete PDS is covered in general by IEC 61800-2.

NOTE Figure 1 of IEC 61800-2 provides further details of the structure of a PDS.

The motor itself and additional specific requirements for its proper incorporation into the PDS are covered by the IEC 60034 series.

![Figure 1 – Component parts of a PDS](image-url)
1 Scope

This part of IEC 60034 describes the design features and performance characteristics of polyphase cage induction motors specifically designed for use on voltage source converter supplies up to 1 000 V. It also specifies the interface parameters and interactions between the motor and the converter including installation guidance as part of a power drive system.

NOTE 1 For motors operating in potentially explosive atmospheres, additional requirements as described in the IEC 60079 series apply.

NOTE 2 This technical report is not primarily concerned with safety. However, some of its recommendations may have implications for safety, which should be considered as necessary.

NOTE 3 Where a converter manufacturer provides specific installation recommendations, they should take precedence over the recommendations of this technical report.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034-1, Rotating electrical machines – Part 1: Rating and performance

IEC 60034-2:1972, Rotating electrical machines – Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles)
Amendment 1 (1995)
Amendment 2 (1996)

IEC 60034-6, Rotating electrical machines – Part 6: Methods of cooling (IC Code)

IEC 60034-9, Rotating electrical machines – Part 9: Noise limits

IEC 60034-14, Rotating electrical machines – Part 14: Mechanical vibration of certain machines with shaft heights 56 mm and higher – Measurement, evaluation and limits of vibration severity

IEC 60034-17, Rotating electrical machines – Part 17: Cage induction motors when fed from converters – Application guide

IEC 61800-2, Adjustable speed electrical power drive systems – Part 2: General requirements – Rating specifications for low voltage adjustable frequency a.c. power drive systems

IEC 61800-3, Adjustable speed electrical power drive systems – Part 3: EMC product standard including specific test methods

IEC 61800-5-1, Adjustable speed electrical power drive systems – Part 5-1: Safety requirements – Electrical, thermal and energy