INTERNATIONAL STANDARD

Surge arresters -

Part 4:

Metal-oxide surge arresters without gaps

for a.c. systems $\sqrt{ }$
© IEC 2001 Copyright - all rights reserved
No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41229190211 Telefax: +41229190300 E-mail: inmail@iec.ch Web: www.iec.ch

CONTENTS

FOREWORD 13
INTRODUCTION 15
SECTION 1: GENERAL
1.1 Scope 17
1.2 Normative references 17
SECTION 2: DEFINITIONS
SECTION 3: IDENTIFICATION AND CLASSIFICATION3535
3.2 Arrester classification 37
SECTION 4: STANDARD RATINGS
4.1 Standard rated voltages
39
4.2 Standard rated frequencies 39
4.3 Standard nominal discharge currents. 39
4.4 Service conditions 39
SECTIQN 5: REQUIREMENTS
5.1 Insulation withstand of the arrester housing 41
5.2 Reference yoltage 41
5.3 Residual voltages. 41
5.4 Internal partial discharge 41
5.5 Seal leak rate 43
5.6 Current/distribution in a multi-column arrester 43
5.7 Thermal stabilits 43
5.8 Long duration current impulse withstand 43
5.9 Operating duty. 43
5.10 Power frequency voltage versus time characteristics of an arrester 45
5.11 Short-circuit 45
5.12 Disconnectors 45
5.13 Requirements for auxiliary equipment such as grading components 45
5.14 Mechanical loads 45
SECTION 6: GENERAL TESTING PROCEDURE
6.1 Measuring equipment and accuracy 47
6.2 Reference voltage measurements 47
6.3 Test samples 47

SECTION 7: TYPE TESTS (DESIGN TESTS)

7.1 General 49
7.2 Insulation withstand tests on the arrester housing 51
7.3 Residual voltage tests 53
7.4 Long duration current impulse withstand test 59
7.5 Operating duty tests 61
7.6 Tests of arrester disconnectors fault indicators 77
7.7 Short-circuit tests 81
7.8 Internal partial discharge tests 81
SECTION 8: ROUTINE TESTS AND ACCEPTANCE TESTS
8.1 Routine tests81
8.2 Acceptance tests 83
SECTION 9: TEST REQUIREMENTS ON PØLYMERHOUSED SURGE ARRESTERS
9.1 General85
9.2 Definitions 85
9.3 Identification and classification 85
9.4 Standard ratings 85
9.5 Requirements 85
9.6 General testing procedure 85
9.7 Type tests (design tests) 87
10.1 General 105
10.2 Definitions 105
10.3 Arrester identification (nameplate) 105
10.4 Standard rating 105
10.5 Requirements. 107
10.6 Genera testing procedures 109
10.7 Type tests (design tests) 109
10.8 Routine tests 117
10.9 Test after erection on site 117
SECTION 11: SEPARABLE AND DEADFRONT ARRESTERS
11.1 General 123
11.2 Definitions 123
11.3 Arrester identification 123
11.4 Standard ratings 123
11.5 Requirements 123
11.6 General testing procedure 123
11.7 Type tests (design tests) 123
11.8 Routine tests and acceptance tests 131

SECTION 12: LIQUID-IMMERSED ARRESTERS

12.1 General 131
12.2 Definitions 131
12.3 Arrester identification 131
12.4 Standard ratings 131
12.5 Requirements 133
12.6 General testing procedure 133
12.7 Type tests (design tests) 133
12.8 Routine tests and acceptance tests 137
SECTION 13: MECHANICAL CONSIDERATIONS FOR SURGE ARRESRERS
13.1 General139
13.2 Definitions 139
13.3 Identification and classification 139
13.4 Standard ratings 139
13.5 Requirements 141
13.6 General testing procedure 141
13.7 Type tests (design tests) 141
Annex A (normative) Abnormal service Conditions. 157
Annex B (normative) Test to verify thermal equivalency between complete arrester and arrester section 159
Annex C (normative) Requirements for High-Lightning Duty arresters for voltage range 1 kV to 52 kV 161
Annex D (normative) Procedure fo verify the power frequency voltage versus time characteristics of an arPester 165
Annex E (informative) Guice to selection of line discharge class 169
Annex F (normative) >Areficicial Rollution test with respect to the thermal stress on porcelain-housed pulti-unit metal-oxide surge arresters 173
Annex G (informative) Typical information given with enquiries and tenders 205
Annex H (informative) Typica circuit for high current impulse operating duty test (see 7.5.4) 209
Annex J (informative) Typical Circuit for a distributed constant impulse generator for the long duration current impulse withstand test (see 7.4) 213
Annex K (informative) Typical maximum residual voltages 215
Annex L (informative) Ageing test procedure - Arrhenius law - Problems with higher temperatures 217
Annex M (informative) Guide for the determination of the voltage distribution along metal-oxide surge arresters 221
Annex N (normative) Mechanical considerations 237
Annex O (informative) Short-circuit tests 245
Figure 1 - Operating duty test on 10000 A line discharge class 1, $5000 \mathrm{~A}, 2500 \mathrm{~A}$ and 1500 A arresters, see 7.5.4 151
Figure 2 - Operating duty test on 10000 A arresters line discharge classes 2 and 3 and 20000 A arresters line discharge classes 4 and 5, see 7.5.5. 153
Figure 3 - Thermal stability test on 10000 A line discharge class 1, 5000 A, 2500 A and 1500 A arresters, see 8.2.2 155
Figure 4 - Thermal stability test on 10000 A arresters line discharge classes 2 and 3and 20000 A arresters line discharge classes 4 and 5 , see 8.2.2155
Figure 5 - Power losses of arrester at elevated temperatures versus time. 67
Figure 6 - Thermomechanical test. 93
Figure 7 - Example of the test arrangement for the thermomechanical test and direction of the cantilever load 95
Figure 8 - Water immersion. 97
Figure 9 - Example of an accelerated weather ageing cycle under operating voltage (according to IEC 61109) 103
Figure 10 - Another example of an accelerated weather ageing cycle 105
Figure 11 - Test set-up for insulation withstand test of separable arresters in insulating housings 125
Figure C. 1 - Operating duty test on 20000 A High Lightning Duty arresters 163
Figure C. 2 - Thermal stability test on 20000 A High Lightning Duty arresters, see 8.2.2. 163
Figure D. 1 - Procedure to verify the power frequency voltage versustime dharacteristics of an arrester. Test on 10000 A line discharge class $1,5000 \mathrm{~A}, 2500 \mathrm{~A}$ and 1500 A arresters 165
Figure D. 2 - Procedure to verify the power frequency yoltage versus time characteristics of an arrester. Test on 20000 A High Lightning Duty arresters 167
Figure D. 3 - Procedure to verify the power frequency votage/versus time characteristics of an arrester. Test on 10000 A arresters, line/discharge classes,2/ and 3 and 20000 A arresters, line discharge classes 4 and 5 167
Figure E. 1 - Specific energy in kJ per kV/rating dependant on the ratio of switching impulse residual voltage $\left(U_{a}\right)$ to the r.m.s. vatue of the rated voltage U_{r} of the arrester 171
Figure F. 1 - Flow-chart showing the procedure for determining the preheating of a test sample 179
Figure H. 1 - Typical test dircuitt diagram for highneurrent impulse operating duty test 209
Figure J. 1 - Typical distributed constant impulse generator for the long duration impulse test. 213
Figure M. 1 - Typigan three-phase arrester installation 231
Figure M. 2 - Simplified multi-stage equivalent circuit of an arrester 231
Figure M. 3 - Geometry of arrester model 233
Figure M. 4-Example of voltage-current characteristic of metal-oxide resistors at $+20^{\circ} \mathrm{C}$ in the reakage current region 235
Figure M. 5 - Calculated voltage stress along the resistor column in case B. 235
Figure N. 1 - Bending moment - multi-unit surge arrester 237
Figure N. 2 - Surge arrester unit 241
Figure N. 3 - Surge arrester dimensions 243
Figure 0.1 - Position of the fuse wire in different cases (for arresters with pressure relief devices) 259
Figure 0.2 - Circuit layout for surge arresters with pressure relief device 261
Figure 0.3 - Circuit layout or surge arresters without pressure relief device 261
Table 1 - Arrester classification and test requirements 37
Table 2 - Steps of rated voltages 39
Table 3 - Peak currents for switching impulse residual voltage test 57
Table 4 - Parameters for the line discharge test on 20000 A and 10000 A arresters 59
Table 5 - Requirements for the long-duration current impulse test on 5000 A and 2500 A arresters 61
Table 7 - Determination of elevated rated and continuous operating voltages 67
Table 6 - Requirements for high current impulses 71
Table 8-10000 A and 20000 A three-phase GIS-arresters - Required withstand voltages 119
Table 9-1500 A, 2500 A and 5000 A three-phase GIS-arresters - Required withstand voltages 121
Table 10 - Insulation withstand test voltages for unscreened separable arresters 127
Table 11 - Insulation withstand test voltages for deadfront arresters or separable arresters in a screened housing 127
Table 12 - Partial discharge test values for separable and deadfront arresters 131
Table C. 1 - Test requirements on 20000 A High Lightning Duty arresters 161
Table F. 1 - Mean external charge for different pollution severities. 181
Table F. 2 - Characteristic of the sample used for the pollution test 183
Table F.3a - Requirements for the device used for thenmeasurement of the charge 185
Table F.3b - Requirements for the device used for the measurement of the temperature 187
Table F. 4 - Calculated values of $\Delta T_{\text {z max }}$ for the selected example 199
Table F. 5 - Results of the salt fog test for the selected example 199
Table F. 6 - Calculated values of $\Delta T_{\text {z }}$ and of T OQ after 5 cycles for the selected example 201
Table F. 7 - Calculated vakues of ΔT_{Z} and of T ODafter 10 cycles for the selected example 203
Table K. 1 - Residual voltages for 2000Q A and 10000 A arresters in per unit of rated voltage 215
Table K. 2 - Residuar yoltages for 5000 A, 2500 A and 1500 A arresters in per unit of rated voltage. 215
Table L. 1 - Minimum demonstrated life time prediction 217
Table L. 2 - Retationship between test durations at $115^{\circ} \mathrm{C}$ and equivalent time at upper limit of ambient temperature 219
Table M, -Results from example calculations 229
Table 0.1 - Methpd of preparing arresters with a pressure relief device for conducting short-circuit current 247
Table 0.2 - Method of preparing arresters without a pressure relief device for conducting short-circuit current 249
Table 0.3 - Required currents for short-circuit tests 257

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SURGE ARRESTERS -
 Part 4: Metal-oxide surge arresters without gaps for a.c. systems

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for/standardization comprising all national electrotechnical committees (IEC National Committees). The objeot of the KEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standands. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject deak with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates olosely with the Internathonal Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical conmittee has representation from all interested National Committees.
3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, teehnicat reports or guides and finey are accepted by the National Committees in that sense.
4) In order to promote international unification, TEC Nakional Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
5) The IEC provides no marking procedure to indieate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
6) Attention is drawn te the possibility that some of the elements of this International Standard may be the subject of patent rights. The hechall not be held responsible for identifying any or all such patent rights.

This International Standard has beenprepared by IEC technical committee 37: Surge arresters.
This consolidated version of YEC 60099-4 is based on the first edition (1991) [documents $37(C O) 38$ and $37(C Q) 4$]], its amendment 1 (1998) [documents 37/192/FDIS and 37/198/RVD] and its amendment 2 (2001) [døcuments 37/268/FDIS and 37/270/RVD].

It bears the edition number 1.2.

A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.

Annexes A, B, C, D, F and N form an integral part of this standard.

Annexes E, G, H, J, K, L, M and O are for information only.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until 2003. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

INTRODUCTION

This International Standard presents the minimum criteria for the requirements and testing of gapless metal-oxide surge arresters that are applied to a.c. power systems.

Arresters covered by this standard are commonly applied to live/front overhead installations in place of the non-linear resistor type gapped arresters covered in IEC 60099-1. Protection of low-voltage circuits, below 3 kV , is under consideration.

An accelerated ageing procedure is incorporated in the standard to simulate the long-term effects of voltage and temperature on the metal-oxide arrester. This is pecessary since the arrester's resistor elements will have system power frequency voltage continurusly applied

SURGE ARRESTERS -
 Part 4: Metal-oxide surge arresters without gaps for a.c. systems

SECTION 1: GENERAL

1.1 Scope

This International Standard applies to non-linear metal-oxide resistor type surge arresters without spark gaps designed to limit voltage surges on a.c. power circuits.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated referepces, the lalest edition of the referenced document (including any amendments) applies.

IEC 60060-1:1989, High-voltage test techniques - Part 1. Gemeral definitions and test requirements

IEC 60068-2-11:1981, Environmental testing-Part 2: Tests. Test Ka: Salt mist IEC 60068-2-14:1984, Environmental testing - Part 2: Tests. Test N: Change of temperature IEC 60068-2-17:1994, BasiC envirommenta久testing procedures - Part 2: Tests - Test Q: Sealing

IEC 60068-2-42:1982, EnvirommentaX testing - Part 2: Tests. Test Kc: Sulphur dioxide test for contacts and connections

IEC 60071: Insulation co-ordimation
IEC 60071-2:1976, Ynsulation CQ-ordination - Part 2: Application guide
IEC 6007イ-2•1996, Insulation co-ordination - Part 2: Application guide
IEC 60099-1:1991, Surge arresters - Part 1: Non-linear resistor type gapped arresters for a.c. systems

IEC 60099-3:1990, Surge arresters - Part 3: Artificial pollution testing of surge arresters
IEC 60270:1981, Partial discharge measurements
IEC 60298:1990, A.C. metal-enclosed switchgear and controlgear for rated voltages above 1 kV to and up to and including 52 kV

IEC 60507:1991, Artificial pollution tests on high-voltage insulators to be used in a.c. systems
IEC 60517:1990, Gas-insulated metal-enclosed switchgear for rated voltages of $72,5 \mathrm{kV}$ and above

IEC 60694:1996, Common specifications for high-voltage switchgear and controlgear standards
IEC 60721-3-2:1997, Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation

IEC 60815:1986, Guide for the selection of insulators in respect of polluted conditions
IEC 61109:1992, Composite insulators for a.c. overhead lines with a nominal voltage greater than 1000 V - Definitions, test methods and acceptance criteria

IEC 61166:1993, High-voltage alternating current circuit-breakers - Guide for seismic qualification of high-voltage alternating current circuit-breakers

IEC 61330:1995, High-voltage/low voltage prefabricated substations
IEEE C62.11:1999, Standard for Metal-Oxide Surge Arresters fox Axternating Current Power Circuits

