Surge arresters –

Part 4:
Metal-oxide surge arresters without gaps
for a.c. systems

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
Surge arresters –

Part 4:
Metal-oxide surge arresters without gaps for a.c. systems

© IEC 2004 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD ... 13
INTRODUCTION ... 17
1 Scope19
2 Normative references ...19
3 Terms and definitions ...21
4 Identification and classification ...37
 4.1 Arrester identification ..37
 4.2 Arrester classification ..39
5 Standard ratings and service conditions ...39
 5.1 Standard rated voltages ..39
 5.2 Standard rated frequencies ...39
 5.3 Standard nominal discharge currents ..39
 5.4 Service conditions ...41
6 Requirements ... 41
 6.1 Insulation withstand of the arrester housing...41
 6.2 Reference voltage ...43
 6.3 Residual voltages ..43
 6.4 Internal partial discharges ...43
 6.5 Seal leak rate ..43
 6.6 Current distribution in a multi-column arrester ...43
 6.7 Thermal stability ..43
 6.8 Long-duration current impulse withstand ...43
 6.9 Operating duty...45
 6.10 Power-frequency voltage versus time characteristics of an arrester.......................51
 6.11 Short-circuit...51
 6.12 Disconnector ...51
 6.13 Requirements for auxiliary equipment such as grading components51
 6.14 Mechanical loads ..51
 6.15 Electromagnetic compatibility ..53
 6.16 End of life ...53
7 General testing procedure ..53
 7.1 Measuring equipment and accuracy ..53
 7.2 Reference voltage measurements ...55
 7.3 Test samples ...55
8 Type tests (design tests) ..55
 8.1 General ...55
 8.2 Insulation withstand tests on the arrester housing ...59
 8.3 Residual voltage tests ..61
 8.4 Long-duration current impulse withstand test...67
 8.5 Operating duty tests ...71
 8.6 Tests of arrester disconnectors/fault indicators ...87
 8.7 Short-circuit test procedure ..91
 8.8 Internal partial discharge tests ..91
 8.9 Test of the bending moment ..91
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.10</td>
<td>Environmental tests</td>
<td>93</td>
</tr>
<tr>
<td>8.11</td>
<td>Seal leak rate test</td>
<td>95</td>
</tr>
<tr>
<td>8.12</td>
<td>Radio interference voltage (RIV) test</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>Routine tests and acceptance tests</td>
<td>99</td>
</tr>
<tr>
<td>9.1</td>
<td>Routine tests</td>
<td>99</td>
</tr>
<tr>
<td>9.2</td>
<td>Acceptance tests</td>
<td>101</td>
</tr>
<tr>
<td>10</td>
<td>Test requirements on polymer-housed surge arresters</td>
<td>105</td>
</tr>
<tr>
<td>10.1</td>
<td>Scope</td>
<td>105</td>
</tr>
<tr>
<td>10.2</td>
<td>Normative references</td>
<td>105</td>
</tr>
<tr>
<td>10.3</td>
<td>Terms and definitions</td>
<td>105</td>
</tr>
<tr>
<td>10.4</td>
<td>Identification and classification</td>
<td>105</td>
</tr>
<tr>
<td>10.5</td>
<td>Standard ratings and service conditions</td>
<td>105</td>
</tr>
<tr>
<td>10.6</td>
<td>Requirements</td>
<td>105</td>
</tr>
<tr>
<td>10.7</td>
<td>General testing procedure</td>
<td>107</td>
</tr>
<tr>
<td>10.8</td>
<td>Type tests (design tests)</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>Test requirements on gas-insulated metal enclosed arresters (GIS-arresters)</td>
<td>139</td>
</tr>
<tr>
<td>11.1</td>
<td>Scope</td>
<td>139</td>
</tr>
<tr>
<td>11.2</td>
<td>Normative references</td>
<td>139</td>
</tr>
<tr>
<td>11.3</td>
<td>Terms and definitions</td>
<td>139</td>
</tr>
<tr>
<td>11.4</td>
<td>Identification and classification</td>
<td>139</td>
</tr>
<tr>
<td>11.5</td>
<td>Standard ratings and service conditions</td>
<td>139</td>
</tr>
<tr>
<td>11.6</td>
<td>Requirements</td>
<td>141</td>
</tr>
<tr>
<td>11.7</td>
<td>General testing procedures</td>
<td>143</td>
</tr>
<tr>
<td>11.8</td>
<td>Type tests (design tests)</td>
<td>143</td>
</tr>
<tr>
<td>11.9</td>
<td>Routine tests</td>
<td>143</td>
</tr>
<tr>
<td>11.10</td>
<td>Test after erection on site</td>
<td>153</td>
</tr>
<tr>
<td>12</td>
<td>Separable and dead-front arresters</td>
<td>159</td>
</tr>
<tr>
<td>12.1</td>
<td>Scope</td>
<td>159</td>
</tr>
<tr>
<td>12.2</td>
<td>Normative references</td>
<td>159</td>
</tr>
<tr>
<td>12.3</td>
<td>Terms and definitions</td>
<td>159</td>
</tr>
<tr>
<td>12.4</td>
<td>Identification and classification</td>
<td>159</td>
</tr>
<tr>
<td>12.5</td>
<td>Standard ratings and service conditions</td>
<td>159</td>
</tr>
<tr>
<td>12.6</td>
<td>Requirements</td>
<td>159</td>
</tr>
<tr>
<td>12.7</td>
<td>General testing procedure</td>
<td>161</td>
</tr>
<tr>
<td>12.8</td>
<td>Type tests (design tests)</td>
<td>161</td>
</tr>
<tr>
<td>12.9</td>
<td>Routine tests and acceptance tests</td>
<td>161</td>
</tr>
<tr>
<td>13</td>
<td>Liquid-immersed arresters</td>
<td>173</td>
</tr>
<tr>
<td>13.1</td>
<td>Scope</td>
<td>173</td>
</tr>
<tr>
<td>13.2</td>
<td>Normative references</td>
<td>173</td>
</tr>
<tr>
<td>13.3</td>
<td>Terms and definitions</td>
<td>173</td>
</tr>
<tr>
<td>13.4</td>
<td>Identification and classification</td>
<td>173</td>
</tr>
<tr>
<td>13.5</td>
<td>Standard ratings and service conditions</td>
<td>175</td>
</tr>
<tr>
<td>13.6</td>
<td>Requirements</td>
<td>175</td>
</tr>
<tr>
<td>13.7</td>
<td>General testing procedure</td>
<td>175</td>
</tr>
<tr>
<td>13.8</td>
<td>Type tests (design tests)</td>
<td>175</td>
</tr>
<tr>
<td>13.9</td>
<td>Routine tests and acceptance tests</td>
<td>191</td>
</tr>
</tbody>
</table>
Annex A (normative) Abnormal service conditions ..193
Annex B (normative) Test to verify thermal equivalency between complete arrester and arrester section195
Annex C (normative) Requirements for high lightning duty arresters for voltage range 1 kV to 52 kV ..197
Annex D (normative) Procedure to verify the power-frequency voltage-versus-time characteristics of an arrester ...203
Annex E (informative) Guide to selection of line discharge class ..207
Annex F (normative) Artificial pollution test with respect to the thermal stress on porcelain-housed multi-unit metal-oxide surge arresters ..211
Annex G (informative) Typical information given with enquiries and tenders241
Annex H (informative) Typical circuit for high current impulse operating duty test (see 8.5.4) ..247
Annex I (informative) Typical circuit for a distributed constant impulse generator for the long duration current impulse withstand test (see 8.4) ..251
Annex J (informative) Typical maximum residual voltages ..253
Annex K (informative) Ageing test procedure – Arrhenius law – Problems with higher temperatures ..255
Annex L (informative) Guide for the determination of the voltage distribution along metal-oxide surge arresters ..259
Annex M (normative) Mechanical considerations ...275
Annex N (informative) Short-circuit tests ..283

Bibliography ..301

Figure 1 – Operating duty test on 10 000 A line discharge Class 1, 5 000 A, 2 500 A and 1 500 A arresters (see 8.5.4) ..47
Figure 2 – Operating duty test on 10 000 A arresters line discharge Classes 2 and 3 and 20 000 A arresters line discharge Classes 4 and 5 (see 8.5.5) ..49
Figure 3 – Power losses of the arrester at elevated temperatures versus time75
Figure 4 – Thermal stability test on 10 000 A line discharge Class 1, 5 000 A, 2 500 A and 1 500 A arresters ..103
Figure 5 – Thermal stability test on 10 000 A arresters line discharge Classes 2 and 3 and 20 000 A arresters line discharge Classes 4 and 5 ..105
Figure 6 – Thermomechanical test ..127
Figure 7 – Example of the test arrangement for the thermomechanical test and direction of the cantilever load ..129
Figure 8 – Water immersion ..131
Figure 9 – Example of an accelerated weather ageing cycle under operating voltage (according to IEC 61109) ..137
Figure 10 – Another example of an accelerated weather ageing cycle139
Figure 11 – Test set-up for insulation withstand test of separable arresters in insulating housings ...163
Figure 12 – Power losses of arrester at elevated temperatures versus time181
Figure C.1 – Operating duty test on 20 000 A high lightning duty arresters201
Figure C.2 – Thermal stability test on 20 000 A high lightning duty arresters (see 9.2.2)201
Figure D.1 – Test on 10 000 A line discharge class 1, 5 000 A, 2 500 A and 1 500 A arresters ..203
Figure D.2 – Test on 20 000 A high lightning duty arresters ...205
Figure D.3 – Test on 10 000 A arresters, line discharge Classes 2 and 3 and 20 000 A arresters, line discharge Classes 4 and 5 ...205
Figure E.1 – Specific energy in kJ per kV rating dependant on the ratio of switching impulse residual voltage \(U_a \) to the r.m.s. value of the rated voltage \(U_r \) of the arrester209
Figure F.1 – Flow-chart showing the procedure for determining the preheating of a test sample..217
Figure H.1 – Typical test circuit diagram for high current impulse operating duty test247
Figure I.1 – Typical distributed constant impulse generator for the long-duration impulse test ...251
Figure L.1 – Typical three-phase arrester installation ...269
Figure L.2 – Simplified multi-stage equivalent circuit of an arrester269
Figure L.3 – Geometry of arrester model ..271
Figure L.4 – Example of voltage-current characteristic of metal-oxide resistors at +20 °C in the leakage current region ...273
Figure L.5 – Calculated voltage stress along the resistor column in case B273
Figure M.1 – Bending moment – multi-unit surge arrester ...275
Figure M.2 – Surge arrester unit ...279
Figure M.3 – Surge-arrester dimensions ..281
Figure N.1 – Position of the fuse wire in different cases (for arresters with pressure-relief devices) ..297
Figure N.2 – Circuit layout for surge arresters with pressure-relief device299
Figure N.3 – Circuit layout or surge arresters without pressure-relief device299

Table 1 – Arrester classification ...39
Table 2 – Steps of rated voltages ...39
Table 3 – Arrester type tests ..57
Table 4 – Peak currents for switching impulse residual voltage test67
Table 5 – Parameters for the line discharge test on 20 000 A and 10 000 A arresters69
Table 6 – Requirements for the long-duration current impulse test on 5 000 A and 2 500 A arresters ..71
Table 7 – Determination of elevated rated and continuous operating voltages77
Table 8 – Requirements for high current impulses ...81
Table 8 – Requirements for high current impulses ...113
Table 9 – 10 000 A and 20 000 A three–phase GIS–arresters – Required withstand voltages

Table 10 – 1 500 A, 2 500 A and 5 000 A three–phase GIS arresters – Required withstand voltages

Table 11 – Insulation withstand test voltages for unscreened separable arresters

Table 12 – Insulation withstand test voltages for dead-front arresters or separable arresters in a screened housing

Table 8 – Requirements for high current impulses

Table 13 – Partial discharge test values for separable and dead-front arresters

Table 7 – Determination of elevated rated and continuous operating voltages

Table 8 – Requirements for high current impulses

Table C.1 – Test requirements on 20 000 A high lightning duty arresters

Table F.1 – Mean external charge for different pollution severities

Table F.2 – Characteristic of the sample used for the pollution test

Table F.3 – Requirements for the device used for the measurement of the charge

Table F.4 – Requirements for the device used for the measurement of the temperature

Table F.5 – Calculated values of ΔT_z max for the selected example

Table F.6 – Results of the salt fog test for the selected example

Table F.7 – Calculated values of ΔT_z and of T_{OD} after five cycles for the selected example

Table F.8 – Calculated values of ΔT_z and of T_{OD} after 10 cycles for the selected example

Table J.1 – Residual voltages for 20 000 A and 10 000 A arresters in per unit of rated voltage

Table J.2 – Residual voltages for 5 000 A, 2 500 A and 1 500 A arresters in per unit of rated voltage

Table K.1 – Minimum demonstrated lifetime prediction

Table K.2 – Relationship between test durations at 115 °C and equivalent time at upper limit of ambient temperature

Table L.1 – Results from example calculations

Table N.1 – Method of preparing arresters with a pressure relief device for conducting short-circuit current

Table N.2 – Method of preparing arresters without a pressure-relief device for conducting short-circuit current

Table N.3 – Required currents for short-circuit tests
INTERNATIONAL ELECTROTECHNICAL COMMISSION

SURGE ARRESTERS –

Part 4: Metal-oxide surge arresters without gaps for a.c. systems

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard 60099-4 has been prepared by IEC technical committee 37: Surge arresters.

This edition includes the following significant technical changes with respect to the previous edition.
• Clauses 1, 2 and 3 contain common subclauses that cover all arrester types. Clauses 4 to 9 contain subclauses that apply to porcelain-housed arresters. To a great extent, the content of Clauses 4 to 9 also applies to arrester types other than porcelain-housed. Any exceptions that apply to polymer-housed, GIS, separable and dead-front, and liquid-immersed arresters are included in Clauses 10 to 13 as entire subclauses, not as parts of subclauses. That is, if any subclause of Clauses 4 to 9 does not apply in its entirety to a particular type of arrester, then a replacement subclause is given in its entirety in the appropriate Clauses 10, 11, 12, or 13. This avoids the necessity for the user of the document to judge which part of a clause has been amended.

• Table 1 has been modified. The previous Table 1 included references to subclauses for type testing. Such references are really not appropriate in Clause 4 and have been transferred to a new table in Clause 8.

• Clauses 6, 8, 11, 12 and 13: modifications have been made to short-circuit requirements.

• Requirements of Clause 13 (mechanical considerations) have been incorporated into Clauses 5, 6, 8, 10, 11, 12 and 13, and Annex A of this new edition.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/298/FDIS</td>
<td>37/300/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
INTRODUCTION

This part of IEC 60099 presents the minimum criteria for the requirements and testing of gapless metal-oxide surge arresters that are applied to a.c. power systems.

Arresters covered by this standard are commonly applied to live/front overhead installations in place of the non-linear resistor-type gapped arresters covered in IEC 60099-1.
1 Scope

This part of IEC 60099 applies to non-linear metal-oxide resistor type surge arresters without spark gaps designed to limit voltage surges on a.c. power circuits.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60270:2000, High-voltage test techniques – Partial discharge measurements

IEC 60507:1991, Artificial pollution tests on high-voltage insulators to be used on a.c. systems

IEC 60815:1986, Guide for the selection of insulators in respect of polluted conditions

IEC 61109:1992, Composite insulators for a.c. overhead lines with a nominal voltage greater than 1 000 V – Definitions, test methods and acceptance criteria

IEC 61330:1995, High-voltage/low-voltage prefabricated substations
IEC 62271-200:2003, *High-voltage switchgear and controlgear – Part 200: A.C. metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV*

CISPR 18-2:1986, *Radio interference characteristics of overhead power lines and high-voltage equipment – Part 2: Methods of measurement and procedure for determining limits*