Tap-changers –

Part 1: Performance requirements and test methods

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
Tap-changers –

Part 1: Performance requirements and test methods

© IEC 2003 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD ... 11

1 Scope ... 15

2 Normative references ... 15

3 Terms and definitions ... 17

4 Service conditions ... 29

 4.1 Temperature of tap-changer environment .. 29
 4.2 Temperature of motor-drive mechanism environment ... 29
 4.3 Overload conditions ... 29

5 Requirements for on-load tap-changers .. 29

 5.1 General requirements ... 29
 5.1.1 Rating .. 29
 5.1.2 Liquid filled compartments for diverter and selector switches 31
 5.1.3 Liquid-level gauges .. 31
 5.1.4 Safety requirements for protection against increase in pressure 31
 5.1.5 Limiting devices for the protection against transient overvoltages 33
 5.1.6 Change-over selector recovery voltages ... 33
 5.1.7 Coarse fine regulation leakage inductance switching .. 33

 5.2 Type tests .. 33
 5.2.1 Temperature rise of contacts .. 35
 5.2.2 Switching tests ... 35
 5.2.3 Short-circuit current test .. 41
 5.2.4 Transition impedance test .. 43
 5.2.5 Mechanical tests ... 45
 5.2.6 Dielectric tests ... 49
 5.2.7 Type-test certificate .. 59

 5.3 Routine tests ... 59
 5.3.1 Mechanical tests ... 59
 5.3.2 Sequence tests .. 59
 5.3.3 Auxiliary circuits insulation test ... 59
 5.3.4 Pressure and vacuum tests .. 61

 5.4 Special tests ... 61
 5.4.1 General .. 61
 5.4.2 Dielectric discharge tests .. 61

6 Requirements for motor drive mechanisms for on-load tap-changers 61

 6.1 General requirements ... 61
 6.1.1 Compliance of component parts .. 61
 6.1.2 Permissible variation of auxiliary supply ... 61
 6.1.3 Step-by-step control ... 61
 6.1.4 Tap position indicator ... 61
 6.1.5 Tap-change in progress indication .. 61
 6.1.6 Limiting devices ... 63
 6.1.7 Parallel control devices .. 63
 6.1.8 Direction of rotation protection .. 63
6.1.9 Overcurrent blocking device
6.1.10 Restarting device
6.1.11 Operation counter
6.1.12 Manual operation of the motor-drive mechanism
6.1.13 Motor-drive cubicle
6.1.14 Protective device against running-through
6.1.15 Protection against access to hazardous parts

6.2 Type tests
6.2.1 Mechanical load test
6.2.2 Overrun test
6.2.3 Degree of protection of motor-drive cubicle

6.3 Routine tests
6.3.1 Mechanical tests
6.3.2 Auxiliary circuits insulation test

7 Requirements for off-circuit tap-changers

7.1 General requirements
7.1.1 Rated characteristics
7.1.2 Types
7.1.3 Handles and drives
7.1.4 Glands
7.1.5 Interlocks
7.1.6 Mechanical end stops

7.2 Type tests
7.2.1 General
7.2.2 Temperature rise of contacts
7.2.3 Short-circuit current test
7.2.4 Mechanical tests
7.2.5 Dielectric tests
7.2.6 Type test certificate

7.3 Routine tests
7.3.1 Mechanical tests
7.3.2 Pressure and vacuum tests

8 Requirements for motor drive mechanisms for off-circuit tap-changers

8.1 General requirements
8.1.1 Compliance of component parts
8.1.2 Permissible variation of auxiliary supply
8.1.3 Tap position indicator
8.1.4 Limiting devices
8.1.5 Operation counter
8.1.6 Manual operation of the motor-drive mechanism
8.1.7 Motor-drive cubicle
8.1.8 Protection against access to hazardous parts

8.2 Type tests
8.2.1 Mechanical load test
8.2.2 Overrun test
8.2.3 Degree of protection of motor-drive cubicle
8.3 Routine tests ...83
 8.3.1 Mechanical tests ..83
 8.3.2 Auxiliary circuits insulation test ..83

9 Nameplate ...83
 9.1 Tap-changers (on-load and off-circuit) ..83
 9.2 Motor-drive mechanisms ..83

10 Off-circuit tap-changer warning label...85

11 Manufacturers operating instructions ...85

Annex A (normative) Supplementary information on switching duty relating to
resistor type tap-changers...87
Annex B (normative) Supplementary information on switching duty relating
to reactor type tap-changers ...93
Annex C (normative) Method for determining the equivalent temperature of the
transition resistor using power pulse current ..115
Annex D (informative) Simulated circuits for service duty and breaking-capacity tests117

Figure 1 – Short-circuit test current as a multiple of the maximum rated through-current43
Figure 2 – Time sequence for the application of test voltage ...57
Figure 3 – Short-circuit test current as a multiple of the maximum rated through-current71
Figure 4 – Warning label ...85
Figure A.1 – Current and voltage vectors for resistor type tap-changers87
Figure B.1 – Operating sequence of reactor type tap-changers with selector switch95
Figure B.2 – Current and voltage vectors for reactor type tap-changers with
selector switch ..97
Figure B.3 – Operating sequence of reactor type tap-changers with selector switch
and equalizer windings ...99
Figure B.4 – Current and voltage vectors for reactor type tap-changers with
selector switch and equalizer windings ..101
Figure B.5 – Operating sequence of a reactor type tap-changer with diverter switch
and tap selector ..105
Figure B.6 – Current and voltage vectors for reactor type tap-changers with diverter
switch and tap selector ...107
Figure B.7 – Operating sequence of a reactor type tap-changer with vacuum interrupter
and tap selector ..111
Figure B.8 – Current and voltage vectors for reactor type tap-changers with vacuum
interrupter and tap selector ...113
Figure D.1 – Simulated test circuit – transformer method ..117
Figure D.2 – Simulated test circuit – resistance method ..119

Table 1 – Temperature of tap-changer environment ..29
Table 2 – Contact temperature-rise limits ..35
Table 3 – Classes of on-load tap-changer ..49
Table 4 – Rated withstand voltages – Series I based on European practice51
Table 5 – Rated withstand voltages – Series II based on North American Practice53
Table 6 – Contact temperature-rise limits for off-circuit tap-changers69
Table 7 – Classes of off-circuit tap-changer ...75
Table A.1 – Duty on main and transition contacts for resistor type tap-changers89
Table A.2 – Effect of load power-factor on circuit-breaking duty for resistor type tap-changers ...91
Table B.1 – Duty on switching contacts for reactor type tap-changers with selector switch – switching direction from P1 to P5 ...95
Table B.2 – Duty on switching contacts for reactor type tap-changers with selector switch and equalizer windings – switching direction from P1 to P599
Table B.3 – Duty on switching contacts for reactor type tap-changers with diverter switch and tap selector – switching direction from P1 to P7103
Table B.4 – Duty on switching contacts for reactor type tap-changers with vacuum interrupter and tap selector – switching direction from P1 to P11109
INTERNATIONAL ELECTROTECHNICAL COMMISSION

TAP-CHANGERS –

Part 1: Performance requirements
and test methods

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60214-1 has been prepared by IEC technical committee 14: Power transformers

This first edition of IEC 60214-1 cancels and replaces IEC 60214 published in 1989. This first edition constitutes a technical revision.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/457/FDIS</td>
<td>14/462/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 60214 consists of the following parts, under the general title Tap-changers:

Part 1: Performance requirements and test methods
Part 2: Application guide (under consideration)
The committee has decided that the contents of this publication will remain unchanged until 2007. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
1 Scope

This part of IEC 60214 applies to on-load tap-changers of both resistor and reactor types, off-circuit tap-changers, and their motor drive mechanisms. It applies mainly to tap-changers immersed in transformer oil according to IEC 60296 but may also be used for tap-changers with gas insulation or immersed in other insulating liquids insofar as conditions are applicable.

It applies to power and distribution transformers of all types and also to reactors.

It does not apply to transformers and reactors mounted on railway rolling stock.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060, High voltage test techniques

IEC 60076-3:2000, Power transformers – Part 3: Insulation levels, dielectric tests and external clearances in air

IEC 60137, Insulated Bushings for alternating voltages above 1000 volts\(^1\)

IEC 60214-2, Tap-changers – Part 2: Application guide\(^2\)

IEC 60270, High voltage test techniques – Partial discharge measurements

IEC 60296, Specification for unused mineral insulating oils for transformers and switchgear

IEC 60354, Loading guide for oil-immersed transformers

IEC 60529, Degrees of protection provided by enclosures (IP Code)

\(^1\) To be published.

\(^2\) At present under revision, document currently IEC 60542.