Low-voltage switchgear and controlgear assemblies –

Part 1:
Type-tested and partially type-tested assemblies

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.

Reference number
IEC 60439-1:1999(E)
Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (www.iec.ch)
- Catalogue of IEC publications
 The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.
- IEC Just Published
 This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.
- Customer Service Centre
 If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

 Email: custserv@iec.ch
 Tel: +41 22 919 02 11
 Fax: +41 22 919 03 00
Low-voltage switchgear and controlgear assemblies –

Part 1:
Type-tested and partially type-tested assemblies
CONTENTS

<table>
<thead>
<tr>
<th>Clause</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>9</td>
</tr>
<tr>
<td>1 General</td>
<td>13</td>
</tr>
<tr>
<td>1.1 Scope and object</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Normative references</td>
<td>13</td>
</tr>
<tr>
<td>2 Definitions</td>
<td>19</td>
</tr>
<tr>
<td>2.1 General</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Constructional units of ASSEMBLIES</td>
<td>23</td>
</tr>
<tr>
<td>2.3 External design of ASSEMBLIES</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Structural parts of ASSEMBLIES</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Conditions of installation of ASSEMBLIES</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Protective measures with regard to electric shock</td>
<td>31</td>
</tr>
<tr>
<td>2.7 Gangways within ASSEMBLIES</td>
<td>33</td>
</tr>
<tr>
<td>2.8 Electronic functions</td>
<td>33</td>
</tr>
<tr>
<td>2.9 Insulation co-ordination</td>
<td>35</td>
</tr>
<tr>
<td>2.10 Short-circuit currents</td>
<td>39</td>
</tr>
<tr>
<td>3 Classification of ASSEMBLIES</td>
<td>39</td>
</tr>
<tr>
<td>4 Electrical characteristics of ASSEMBLIES</td>
<td>41</td>
</tr>
<tr>
<td>4.1 Rated voltages</td>
<td>41</td>
</tr>
<tr>
<td>4.2 Rated current (I_n) (of a circuit of an ASSEMBLY)</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Rated short-time current (I_cw) (of a circuit of an ASSEMBLY)</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Rated peak withstand current (I_pk) (of a circuit of an ASSEMBLY)</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Rated conditional short-circuit current (I_cc) (of a circuit of an ASSEMBLY)</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Rated fused short-circuit current (I_cf) (of a circuit of an ASSEMBLY)</td>
<td>43</td>
</tr>
<tr>
<td>4.7 Rated diversity factor</td>
<td>43</td>
</tr>
<tr>
<td>4.8 Rated frequency</td>
<td>45</td>
</tr>
<tr>
<td>5 Information to be given regarding the ASSEMBLY</td>
<td>45</td>
</tr>
<tr>
<td>5.1 Nameplates</td>
<td>45</td>
</tr>
<tr>
<td>5.2 Markings</td>
<td>47</td>
</tr>
<tr>
<td>5.3 Instructions for installation, operation and maintenance</td>
<td>47</td>
</tr>
<tr>
<td>6 Service conditions</td>
<td>47</td>
</tr>
<tr>
<td>6.1 Normal service conditions</td>
<td>47</td>
</tr>
<tr>
<td>6.2 Special service conditions</td>
<td>51</td>
</tr>
<tr>
<td>6.3 Conditions during transport, storage and erection</td>
<td>53</td>
</tr>
</tbody>
</table>
7 Design and construction

7.1 Mechanical design

7.2 Enclosure and degree of protection

7.3 Temperature rise

7.4 Protection against electric shock

7.5 Short-circuit protection and short-circuit withstand strength

7.6 Switching devices and components installed in ASSEMBLIES

7.7 Internal separation of ASSEMBLIES by barriers or partitions

7.8 Electrical connections inside an ASSEMBLY: bars and insulated conductors

7.9 Requirements for electronic equipment supply circuits

7.10 Electromagnetic compatibility (EMC)

7.11 Description of the types of electrical connections of functional units

8 Test specifications

8.1 Classification of tests

8.2 Type tests

8.3 Routine tests

Annex A (normative) Minimum and maximum cross-sections of copper conductors suitable for connection

Annex B (normative) Method of calculating the cross-sectional area of protective conductors with regard to thermal stresses due to currents of short duration

Annex C (informative) Typical examples of ASSEMBLIES

Annex D (informative) Forms of internal separations

Annex E (informative) Items subject to agreement between manufacturer and user

Annex F (normative) Measurement of creepage distances and clearances

Annex G (normative) Correlation between the nominal voltage of the supply system and the rated impulse withstand voltage of the equipment

Bibliography

Figure 1 Ratio $\frac{\hat{U}_i + \Delta u}{U_i}$ as a function of time

Figure 2 Maximum permitted harmonic component of the nominal system voltage

Figure C.1 Open-type ASSEMBLY (see 2.3.1)

Figure C.2 Dead-front ASSEMBLY (see 2.3.2)

Figure C.3 Cubicle-type ASSEMBLY (see 2.3.3.1)

Figure C.4 Multi-cubicle-type ASSEMBLY (see 2.3.3.2)

Figure C.5 Desk-type ASSEMBLY (see 2.3.3.3)

Figure C.6 Multi-box-type ASSEMBLY (see 2.3.3.5)
Table 1 Values of rated diversity factor ... 45
Table 2 Temperature-rise limits .. 63
Table 3 Cross-sectional area of protective conductors (PE, PEN) 73
Table 3A Cross-sectional area of a copper bonding conductor 75
Table 4 .. 85
Table 5 Conductor selection and installation requirements 87
Table 6 Electrical conditions for the different positions of withdrawable parts .. 95
Table 7 List of verifications and tests to be performed on TTA and PTTA 113
Table 8 Test copper conductors for test currents up to 400 A inclusive 117
Table 9 Standard cross-sections of copper conductors corresponding to the test current . 119
Table 10 ... 125
Table 11 .. 125
Table 12 Relationship between prospective fault current and diameter of copper wire...... 131
Table 13 Dielectric withstand voltages for impulse, power frequency and d.c. tests 147
Table 14 Minimum clearances in air ... 147
Table 15 Test voltages across the open contacts of equipment suitable for isolation 149
Table 16 Minimum creepage distances .. 151
Table A.1 ... 153
Table B.1 Values of k for insulated protective conductors not incorporated in cables, or bare protective conductors in contact with cable covering 155
Table G.1 Correspondence between the nominal voltage of the supply system and the equipment rated impulse withstand voltage, in the case of overvoltage protection by surge-arresters according to IEC 60099-1 197
INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR ASSEMBLIES –

Part 1: Type-tested and partially type-tested assemblies

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60439-1 has been prepared by subcommittee 17D: Low-voltage switchgear and controlgear assemblies, of IEC technical committee 17: Switchgear and controlgear.

The text of this standard is based on the third edition, amendments 1 and 2, and the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>17D/214A/FDIS</td>
<td>17D/221/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.
Annexes A, B, F and G form an integral part of this standard.

Annexes C, D and E are for information only.

The committee has decided that this publication remains valid until 2002. At this date, in accordance with the committee’s decision, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
1 General

1.1 Scope and object

This International Standard applies to low-voltage switchgear and controlgear ASSEMBLIES (type-tested ASSEMBLIES (TTA) and partially type-tested ASSEMBLIES (PTTA)), the rated voltage of which does not exceed 1 000 V a.c. at frequencies not exceeding 1 000 Hz, or 1 500 V d.c.

This standard also applies to ASSEMBLIES incorporating control and/or power equipment, the frequencies of which are higher. In this case, appropriate additional requirements will apply.

This standard applies to stationary or movable ASSEMBLIES with or without enclosure.

NOTE Additional requirements for certain specific types of assemblies are given in supplementary IEC standards.

This standard applies to ASSEMBLIES intended for use in connection with the generation, transmission, distribution and conversion of electric energy, and for the control of electric energy consuming equipment.

It also applies to ASSEMBLIES designed for use under special service conditions, for example in ships, in rail vehicles, for machine tools, for hoisting equipment or in explosive atmospheres, and for domestic (operated by unskilled persons) applications, provided that the relevant specific requirements are complied with.

This standard does not apply to individual devices and self-contained components, such as motor starters, fuse switches, electronic equipment, etc. complying with their relevant standards.

The object of this standard is to lay down the definitions and to state the service conditions, construction requirements, technical characteristics and tests for low-voltage switchgear and controlgear ASSEMBLIES.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60038:1983, IEC standard voltages

IEC 60050(441):1984, International Electrotechnical Vocabulary (IEV) – Chapter 441: Switchgear, controlgear and fuses

IEC 60060, *High-voltage test techniques*

IEC 60073:1996, *Basic and safety principles for man-machine interface, marking and identification – Coding principles for indication devices and actuators*

IEC 60112:1979, *Method for determining the comparative and the proof-tracking indices of solid insulating materials under moist conditions*

IEC 60227-3:1993, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 3: Non-sheathed cables for fixed wiring*

IEC 60227-4:1992, *Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V – Part 4: Sheathed cables for fixed wiring*

IEC 60245-3:1994, *Rubber insulated cables of rated voltages up to and including 450/750 V – Part 3: Heat resistant silicone insulated cables*

IEC 60245-4:1994, *Rubber insulated cables of rated voltages up to and including 450/750 V – Part 4: Cords and flexible cables*

IEC 60269, *Low-voltage fuses*

IEC 60364-4-41:1992, *Electrical installations of buildings – Part 4: Protection for safety – Chapter 41: Protection against electric shock*

IEC 60364-4-443:1995, *Electrical installations of buildings – Part 4: Protection for safety – Chapter 44: Protection against overvoltages – Section 443: Protection against overvoltages of atmospheric origin or due to switching*

* There is a consolidated edition 2.1 (1999) that includes IEC 60364-4-443 (1995) and its amendment 1 (1998).*
IEC 60364-5-54:1980, Electrical installations of buildings – Part 5: Selection and erection of electrical equipment – Chapter 54: Earthing arrangements and protective conductors

IEC 60445:1988, Identification of equipment terminals and of terminations of certain designated conductors, including general rules for an alphanumeric system

IEC 60446:1989, Identification of conductors by colours or numerals

IEC 60447:1993, Man-machine interface (MMI) – Actuating principles

IEC 60502:1994, Extruded solid dielectric insulated power cables for rated voltages from 1 kV to 30 kV

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)

IEC 60664-1:1992, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60750:1983, Item designation in electrotechnology

IEC 60890:1987, A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear

IEC 60947-1:1988, Low-voltage switchgear and controlgear – Part 1: General rules

IEC 60947-3:1999, Low-voltage switchgear and controlgear – Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units

IEC 60947-4-1:1990, Low-voltage switchgear and controlgear – Part 4: Contactors and motor-starters – Section 1: Electromechanical contactors and motor-starters

IEC 61000-4-3:1995, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 3: Radiated, radio-frequency, electromagnetic field immunity test

IEC 61000-4-5:1995, Electromagnetic compatibility (EMC) – Part 4: Testing and measurement techniques – Section 5: Surge immunity tests

IEC 61117:1992, A method for assessing the short-circuit withstand strength of partially type-tested assemblies (PTTA)

CISPR 11:1990, Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment