INTERNATIONAL
STANDARD

IEC

60870-5-104

First edition
2000-12

Telecontrol equipment and systems –

Part 5-104:
Transmission protocols –
Network access for IEC 60870-5-101
using standard transport profiles

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
INTERNATIONAL STANDARD

IEC 60870-5-104

First edition
2000-12

Telecontrol equipment and systems –

Part 5-104: Transmission protocols – Network access for IEC 60870-5-101 using standard transport profiles

© IEC 2000 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembe, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

PRICE CODE XA

For price, see current catalogue
CONTENTS

FOREWORD ... 7
INTRODUCTION ... 9

Clause
1 Scope and object ... 11
2 Normative references ... 11
3 General architecture... 13
4 Protocol structure ... 17
5 Definition of Application Protocol Control Information (APCI) .. 21
 5.1 Protection against loss and duplication of messages ... 25
 5.2 Test procedures .. 29
 5.3 Transmission Control using Start/Stop... 33
 5.4 Portnumber ... 35
 5.5 Maximum number of outstanding I format APDUs (k) ... 37
6 Selection of ASDUs defined in IEC 60870-5-101 and additional ASDUs 39
7 Mapping of selected application data units and functions to the TCP services 45
 7.1 Station initialization (6.1.5 to 6.1.7 of IEC 60870-5-5) .. 45
 7.2 Data acquisition by polling (6.2 of IEC 60870-5-5) .. 55
 7.3 Cyclic data transmission (6.3 of IEC 60870-5-5) .. 55
 7.4 Acquisition of events (6.4 of IEC 60870-5-5) .. 55
 7.5 General interrogation (6.6 of IEC 60870-5-5) ... 55
 7.6 Clock synchronization (6.7 of IEC 60870-5-5) .. 57
 7.7 Command transmission (6.8 of IEC 60870-5-5) .. 59
 7.8 Transmission of integrated totals (6.9 of IEC 60870-5-5) .. 61
 7.9 Parameter loading (6.10 of IEC 60870-5-5)... 61
 7.10 Test procedure (6.11 of IEC 60870-5-5) .. 63
 7.11 File transfer (6.12 of IEC 60870-5-5) Control and monitor direction 63
8 ASDUs for process information in control direction with time tag 67
 8.1 TYPE IDENT 58: C_SC_TA_1 Single command with time tag CP56Time2a 67
 8.2 TYPE IDENT 59: C_DC_TA_1 Double command with time tag CP56Time2a 69
 8.3 TYPE IDENT 60: C_RC_TA_1 Regulating step command with
 time tag CP56Time2a ... 71
 8.4 TYPE IDENT 61: C_SE_TA_1 Set-point command with time tag CP56Time2a, normalized value ... 73
 8.5 TYPE IDENT 62: C_SE_TB_1 Set-point command with time tag CP56Time2a, scaled value ... 75
 8.6 TYPE IDENT 63: C_SE_TC_1 Set-point command with time tag CP56Time2a, short floating point number ... 77
 8.7 TYPE IDENT 64: C_BO_TA_1 Bitstring of 32 bit with time tag CP56Time2a 79
 8.8 TYPE IDENT 107: C_TS_TA_1 Test command with time tag CP56Time2a 81
9 Interoperability .. 83
 9.1 System or device ... 83
 9.2 Network configuration .. 83
 9.3 Physical layer ... 85
 9.4 Link layer ... 85
 9.5 Application layer .. 87
 9.6 Basic application functions ... 99

Figure 1 – General architecture (example) ... 15
Figure 2 – Selected standard provisions of the defined telecontrol companion standard ... 17
Figure 3 – Selected standard provisions of the TCP/IP protocol suite RFC 2200 (example) ... 19
Figure 4 – APDU of the defined telecontrol companion standard 21
Figure 5 – APCI of the defined telecontrol companion standard 21
Figure 6 – Control field of type Information transfer format (I format) 23
Figure 7 – Control field of type numbered supervisory functions (S format) 23
Figure 8 – Control field of type unnumbered control functions (U format) 25
Figure 9 – Undisturbed sequences of numbered I format APDUs 27
Figure 10 – Undisturbed sequences of numbered I format APDUs acknowledged by an S format APDU ... 27
Figure 11 – Disturbed sequence of numbered I format APDUs 29
Figure 12 – Time-out in case of a not acknowledged last I format APDU 29
Figure 13 – Undisturbed test procedure .. 31
Figure 14 – Unconfirmed test procedure ... 31
Figure 15 – Start data transfer procedure ... 33
Figure 16 – Stop data transfer procedure ... 35
Figure 17 – TCP connection establishment and close .. 47
Figure 18 – Initialization of the controlling station .. 49
Figure 19 – Local initialization of the controlled station .. 51
Figure 20 – Remote initialization of the controlled station ... 53
Figure 21 – ASDU: C_SC_TA_1 Single command with time tag CP56Time2a 67
Figure 22 – ASDU: C_DC_TA_1 Double command with time tag CP56Time2a 69
Figure 23 – ASDU: C_RC_TA_1 Regulating step command with time tag CP56Time2a 71
Figure 24 – ASDU: C_SE_TA_1 Set-point command with time tag CP56Time2a, normalized value ... 73
Figure 25 – ASDU: C_SE_TB_1 Set-point command with time tag CP56Time2a, scaled value ... 75
Figure 26 – ASDU: C_SE_TC_1 Set-point command with time tag CP56Time2a, short floating point number ... 77
Figure 27 – ASDU: C_BO_TA_1 Bitstring of 32 bit with time tag CP56Time2a 79
Figure 28 – ASDU: C_TS_TA_1 Test command with time tag CP56Time2a 81

Table 1 – Process information in monitor direction ... 39
Table 2 – Process information in control direction ... 41
Table 3 – System information in monitor direction ... 43
Table 4 – System information in control direction ... 43
Table 5 – Parameter in control direction ... 43
Table 6 – File transfer ... 43
INTERNATIONAL ELECTROTECHNICAL COMMISSION

TELECONTROL EQUIPMENT AND SYSTEMS –

Part 5-104: Transmission protocols –
Network access for IEC 60870-5-101 using standard transport profiles

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60870-5-104 has been prepared by IEC technical committee 57: Power system control and associated communications.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/487/FDIS</td>
<td>57/499/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
INTRODUCTION

IEC 60870-5-101 provides a communication profile for sending basic telecontrol messages between a central telecontrol station and telecontrol outstations, which uses permanent directly connected data circuits between the central station and individual outstations.

In some applications, it may be required to send the same types of application messages between telecontrol stations using a data network containing relay stations which store and forward the messages and provide only a virtual circuit between the telecontrol stations. This type of network delays messages by varying amounts of time depending on the network traffic load.

In general, the variable message delay times mean that it is not possible to use the link layer as defined in IEC 60870-5-101 between telecontrol stations. However, in some cases it is possible to connect telecontrol stations having all three layers of the companion standard IEC 60870-5-101 to suitable data networks using Packet Assembler Disassembler (PAD) type stations to provide access for balanced communication.

In all other cases this companion standard, which does not use the link functions of IEC 60870-5-101, may be used to provide balanced access via a suitable transport profile.
1 Scope and object

This part of IEC 60870 applies to telecontrol equipment and systems with coded bit serial data transmission for monitoring and controlling geographically widespread processes. It defines a telecontrol companion standard that enables interoperability among compatible telecontrol equipment. The defined telecontrol companion standard utilizes standards of the IEC 60870-5 series. The specifications of this part present a combination of the application layer of IEC 60870-5-101 and the transport functions provided by a TCP/IP (Transmission Control Protocol/Internet Protocol). Within TCP/IP, various network types can be utilized, including X.25, FR (Frame Relay), ATM (Asynchronous Transfer Mode) and ISDN (Integrated Service Data Network). Using the same definitions, alternative ASDUs (Application Service Data Unit) as specified in other IEC 60870-5 companion standards (for example, IEC 60870-5-102) may be combined with TCP/IP, but this is not described further in this part.

NOTE Security mechanisms are outside the scope of this standard.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 60870. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of IEC 60870 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60870-5-3:1992, Telecontrol equipment and systems – Part 5: Transmission protocols – Section 3: General structure of application data

IEC 60870-5-4:1993, Telecontrol equipment and systems – Part 5: Transmission protocols – Section 4: Definition and coding of application information elements

IEC 60870-5-5:1995, Telecontrol equipment and systems – Part 5: Transmission protocols – Section 5: Basic application functions

IEC 60870-5-102:1996, Telecontrol equipment and systems – Part 5: Transmission protocols – Section 102: Companion standard for the transmission of integrated totals in electric power systems

ITU-T Recommendation X.25:1996, Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit
3 General architecture

This standard defines the use of an open TCP/IP-interface to a network, containing for example a LAN for telecontrol equipment, which transports IEC 60870-5-101 ASDUs. Routers which include the different WAN-types (for example, X.25, Frame Relay, ISDN, etc.) may be connected via a common TCP/IP-LAN-interface (see figure 1). Figure 1 shows a redundant configuration in the central station in addition to a non-redundant system.

Motivations:

The use of separate routers offers the following advantages.

– There is no need for network-specific software in end systems.
– There is no need for routing functionality in end systems.
– There is no need for network management in end systems.
– It facilitates obtaining end systems from manufacturers that specialize in telecontrol equipment.
– It facilitates obtaining individual separate routers, to suit a variety of networks from manufacturers specializing in this non-telecontrol specific field.
– It is possible to change the network type by replacing only the router type, without affecting the end systems.
– It is particularly suitable for converting existing end systems that conform to IEC 60870-5-101.
– It is suitable for present and future implementations.