Electrostatics –
Part 5-1:
Protection of electronic devices from electrostatic phenomena –
General requirements

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
Electrostatics –
Part 5-1:
Protection of electronic devices from electrostatic phenomena –
General requirements

© IEC 1998 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD .. 15

INTRODUCTION .. 19

Clause

1 Scope ... 21

2 Normative references ... 21

3 Definitions ... 23

4 Signs and markings .. 29

4.1 Markings ... 29

4.1.1 ESDS marking .. 29

4.1.2 Packaging marking ... 29

4.1.3 Equipment marking ... 29

4.2 Documentation .. 29

4.3 Signs for ESD protected areas (EPA) ... 29

4.3.1 EPA without exposed conductors with a potential in excess of 250 V a.c. or 500 V d.c. ... 29

4.3.2 EPA with exposed conductors with a potential in excess of 250 V a.c. or 500 V d.c. ... 29

4.4 Marking of EPA bonding points (EBP) .. 29

5 ESD protected area (EPA) ... 31

5.1 Configuration ... 31

5.1.1 General ... 31

5.1.2 Responsibilities ... 31

5.1.3 High-voltage EPA .. 31

5.2 Requirements for specific ESD protective items ... 31

5.2.1 General ... 31

5.2.2 Working surfaces and storage racks .. 31

5.2.3 Floors ... 33

5.2.4 Seating ... 33

5.2.5 Garments .. 33

5.2.6 Gloves and finger cots ... 33

5.2.7 Wrist strap ... 33

5.2.8 Footwear .. 33

5.2.9 Ionizers ... 35

5.2.10 Tools, machinery, dispensers and test equipment ... 35

5.2.11 Trolleys and carts ... 35

5.3 Construction of an EPA ... 35

5.3.1 General ... 35

5.3.2 EPA ground facility ... 35

5.3.3 EPA ground bonding point (EBP) .. 35

5.3.4 EPA ground cords .. 37

5.3.5 Electrostatic fields ... 37

5.3.6 Certification of conformance .. 37

5.4 Field work .. 37

5.5 EPA working practices .. 37
Clause 6: Protective packaging

6.1 General

6.2 Purchase

6.3 Receipt and storage

6.4 Unpacking, inspection and storage within an EPA

Clause 7: Purchase, receipt, storage and handling

7.1 General

7.2 Purchase

7.3 Receipt and storage

7.4 Unpacking, inspection and storage within an EPA

Clause 8: Training

8.1 Relevant structured ESD training

8.2 Personnel training

8.3 Introduction courses

8.4 Items for consideration in training

8.5 Retraining

8.6 Register of trained personnel

8.7 Training provided by the ESD co-ordinator

Clause 9: Quality responsibilities

9.1 Responsibilities

9.1.1 General management

9.1.2 Personnel

9.1.3 Management

9.2 ESD co-ordinator

9.3 Procurement of ESD protective items

9.3.1 Approval of ESD protective items

9.3.2 Qualified protective items

9.3.3 Procurement records

9.3.4 Procurement of ESDS and subcontracted work

9.4 Checking of electrostatic precautions

9.5 Limits and checks

9.6 Daily checks

9.6.1 Visual check

9.6.2 Wrist strap

9.6.3 Non-permanent footwear

9.6.4 Permanent footwear used as primary means of grounding

9.7 Monthly checks

9.7.1 Earth bonding

9.7.2 Ionization system

9.8 Six-monthly checks

9.8.1 General

9.8.2 Electrostatic fields

9.8.3 Signs and labels

9.8.4 Non-disposable garments

9.8.5 Permanent footwear

9.9 Disposable garments
10 Periodic audit instructions

10.1 Periodic audits

10.2 Checks in areas with power potentials greater than 250 V a.c. or 500 V d.c

10.3 Checks of EPA labels

10.4 Checks of wrist strap discipline

10.5 Checks of wrist straps and footwear testers

10.6 Check of specific requirements

10.7 Visual inspection

10.8 Test on the resistance of existing work surfaces

10.9 Test on parameters of protective packaging materials and transit boxes

10.10 Check of discarded packaging and other materials

10.11 Electrostatic fields

10.12 Humidity control

10.13 Ionization

10.14 Tools

10.15 Check of product selection procedures

10.16 Check of procurement records

10.17 Audit report

10.18 Follow-up audit

Annexes

Annex A (normative) Test methods

A.1 Resistance measurement method for the testing of floor, working surface or storage rack

A.2 Resistance measurement method for the testing of seating

A.3 Resistance measurement method for the testing of garments

A.4 Measurement method for packaging

A.4.1 Instrumentation

A.4.2 Electrode assembly

A.4.3 Sample preparation and handling

A.4.4 System verification fixtures for surface resistance

A.4.5 Test procedure

A.5 Measurement method for testing of wrist straps, footwear, gloves, finger cots and tools

A.5.1 Apparatus required

A.5.2 Measurement method for wrist strap testing

A.5.3 Measurement procedure for footwear testing

A.5.4 Gloves, finger cots and tools

A.6 Test methods and equipment for ionization

A.6.1 Test method for ionization

A.6.2 Method of measuring the capacitance of an isolated conductive plate

A.6.3 Ionizer simplified test method

A.6.4 Local ionizer functional checks
Annexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.7</td>
<td>Test method for evaluating the performance of electrostatic discharge shielding material – Bags</td>
</tr>
<tr>
<td>A.7.1</td>
<td>Description</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Equipment</td>
</tr>
<tr>
<td>A.7.3</td>
<td>Bag size</td>
</tr>
<tr>
<td>A.7.4</td>
<td>ESD simulator waveform verification procedure</td>
</tr>
<tr>
<td>A.7.5</td>
<td>System verification procedure</td>
</tr>
<tr>
<td>A.7.6</td>
<td>Test procedure/conditioning</td>
</tr>
<tr>
<td>Annex B (informative)</td>
<td>Test methods for charge decay</td>
</tr>
<tr>
<td>B.1</td>
<td>Method of measurement of charge decay</td>
</tr>
<tr>
<td>B.1.1</td>
<td>Principles</td>
</tr>
<tr>
<td>B.1.2</td>
<td>Environmental conditions</td>
</tr>
<tr>
<td>B.1.3</td>
<td>Apparatus</td>
</tr>
<tr>
<td>B.1.4</td>
<td>Procedure</td>
</tr>
<tr>
<td>B.1.5</td>
<td>Results</td>
</tr>
<tr>
<td>B.1.6</td>
<td>Test report</td>
</tr>
<tr>
<td>B.2</td>
<td>Method of measurement of charge decay for tools (suitable for tools with resistance to EPA ground of $10^8 \Omega$ to $10^{12} \Omega$)</td>
</tr>
<tr>
<td>B.2.1</td>
<td>Equipment</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Procedure</td>
</tr>
<tr>
<td>Annex C (informative)</td>
<td>ESDS design considerations to minimize the effects of ESD</td>
</tr>
<tr>
<td>C.1</td>
<td>Identification</td>
</tr>
<tr>
<td>C.2</td>
<td>Warning notices</td>
</tr>
<tr>
<td>C.3</td>
<td>Design of electrostatic discharge sensitive devices</td>
</tr>
<tr>
<td>C.4</td>
<td>Design of assemblies</td>
</tr>
<tr>
<td>C.4.1</td>
<td>Electronic assemblies</td>
</tr>
<tr>
<td>C.4.2</td>
<td>Consideration of the most sensitive components</td>
</tr>
<tr>
<td>C.4.3</td>
<td>Guard-tracks</td>
</tr>
<tr>
<td>C.4.4</td>
<td>Diode protection on edge connectors</td>
</tr>
<tr>
<td>C.4.5</td>
<td>Electrical connection of unused ESDS inputs</td>
</tr>
<tr>
<td>C.4.6</td>
<td>Tracks leading to, or away from ESDS</td>
</tr>
<tr>
<td>C.4.7</td>
<td>Labelling of ESDS</td>
</tr>
<tr>
<td>C.5</td>
<td>Packaging design</td>
</tr>
<tr>
<td>C.6</td>
<td>System design for service</td>
</tr>
<tr>
<td>C.7</td>
<td>Design evaluation procedure</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Example of ESDS basic symbol</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Examples of ESDS simplified symbol</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Example of warning label for ESDS</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Example of packaging label</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Example of equipment label</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Example of EPA sign</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Example of a sign for an EPA which may contain high-voltages</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Example of EPA boundary label</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Example of EBP label</td>
</tr>
</tbody>
</table>
Figures

Figure 10 – Example of an EPA exit sign .. 69
Figure 11 – Example of an EPA ... 71
Figure 12 – Schematic of a typical EPA ... 73
Figure 13 – Example of EPA certificate of conformance 75
Figure 14 – Example of field work implementation of an EPA 77
Figure 15 – Example of field work implementation of an EPA with bench 79
Figure A.1 – Electrode assembly for the measurement of surface resistance ... 95
Figure A.2 – Fixture for the verification in the lower resistance range 95
Figure A.3 – Connection of the instrumentation for resistance measurement 97
Figure A.4 – Fixture for the verification in the upper resistance range 97
Figure A.5 – Resistance to EPA ground for wrist strap 99
Figure A.6 – Resistance to groundable point for a wrist band 101
Figure A.7 – End-to-end resistance for a ground cord 101
Figure A.8 – Resistance to EPA ground for footwear 103
Figure A.9 – Surface to groundable point resistance for gloves and typical hand tools 105
Figure A.10 – Charged plate monitor components 107
Figure A.11 – Charged plate detail ... 109
Figure A.12 – Test locations for room ionization – AC grids and d.c. bar systems 109
Figure A.13 – Test locations for room ionization – Single polarity emitter systems 111
Figure A.14 – Test locations for room ionization – Dual d.c. line systems 111
Figure A.15 – Test locations for room ionization – Pulsed d.c. emitter system 111
Figure A.16 – Test locations for vertical laminar flow hood – Top view 113
Figure A.17 – Vertical laminar flow hood – Side view 113
Figure A.18 – Test locations for horizontal laminar flow hood – Top view ... 115
Figure A.19 – Horizontal laminar flow hood – Side view 115
Figure A.20 – Test locations for bench top ionizers 117
Figure A.21 – Test locations for overhead ionizer – Top view 119
Figure A.22 – Test locations for overhead ionizer – Side view 119
Figure A.23 – Test location for compressed gas – Guns or nozzles 121
Figure A.24 – Charged plate monitor ... 125
Figure A.25 – Static decay time and offset voltage 125
Figure A.26 – Measurement positions of the charged plate monitor for horizontal applications ... 127
Figure A.27 – Measurement positions of the charged plate monitor for vertical applications ... 129
Figure A.28 – ESD simulator .. 137
Figure A.29 – Parallel plate capacitive probe .. 137
Figure A.30 – Current waveform through a 500 Ω resistor 139
Figure B.1 – Arrangement for measurement of self dissipation of charge – Method A 145
Figure B.2 – Arrangement for measurement of contact dissipation of charge – Method B 145
Figure B.3 – Charge decay for small hand-held tools 153
<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 – ESD protective item requirements</td>
<td>55</td>
</tr>
<tr>
<td>Table 2 – Packaging characteristics</td>
<td>57</td>
</tr>
<tr>
<td>Table 3 – Example of audit report</td>
<td>59</td>
</tr>
<tr>
<td>Table 4 – Example of EPA equipment list</td>
<td>61</td>
</tr>
<tr>
<td>Table A.1 – Test methods</td>
<td>81</td>
</tr>
</tbody>
</table>

This is a preview - click here to buy the full publication
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROSTATICS –

Part 5-1: Protection of electronic devices from electrostatic phenomena – General requirements

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical report of one of the following types:

• type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
• type 2, when the subject is still under technical development or where for any other reason there is the future but no immediate possibility of an agreement on an International Standard;
• type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard, for example “state of the art”.

Technical reports of types 1 and 2 are subject to review within three years of publication to decide whether they can be transformed into International Standards. Technical reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.
IEC 61340-5-1, which is a technical report of type 2, has been prepared by IEC technical committee 101: Electrostatics.

The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Committee draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>101/18/CDV</td>
<td>101/38/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This document is issued in the type 2 technical report series of publications (according to G.3.2.2 of part 1 of the IEC/ISO Directives) as a "prospective standard for provisional application in the field of protection of electronic devices from electrostatic phenomena" because there is an urgent requirement for guidance on how standards in this field should be used to meet an identified need.

This document is not to be regarded as an "International Standard". It is proposed for provisional application so that information and experience of its use in practice may be gathered. Comments on the content of this document should be sent to the IEC Central Office.

A review of this type 2 technical report will be carried out not later than three years after its publication, with the options of either extension for a further three years or conversion into an International Standard or withdrawal.

Annex A forms an integral part of this technical report.

Annexes B and C are for information only.

IEC 61340 consists of the following parts, under the general title: Electrostatics

- Part 1: General
- Part 2-1: Measurement methods in electrostatics – Chargeability
- Part 2-2: Measurement methods in electrostatics – Resistances and resistivities
- Part 3-1: Methods for simulating electrostatic effects – Electrostatic discharge simulation – Human Body Model (HBM)
- Part 3-2: Methods for simulating electrostatic effects – Electrostatic discharge simulation – Machine Model (MM)
- Part 3-3: Methods for simulating electrostatic effects – Electrostatic discharge simulation – Charged Device Model (CDM)
- Part 4-1: Standard test methods for specific applications – Electrostatic behaviour of floor coverings and installed floors
- Part 4-2: Under consideration
- Part 4-3: Standard test methods for specific applications – Test methods for the characterisation of electrostatic protective footwear
- Part 5-1: Protection of electronic devices from electrostatic phenomena – General requirements
- Part 5-2: Protection of electronic devices from electrostatic phenomena – User guide

The contents of the corrigendum of February 1999 and December 2002 have been included in this copy.
INTRODUCTION

Compliance with this technical report concerns the installation of new equipment only. Existing equipment should be replaced as soon as is practical. For the duration of the changeover period, extra precautions should be considered.

Some of the effects of static electricity have been known for several thousands of years. In more recent times, their properties have been understood and have been used to advantage in many applications. Unfortunately some properties of static electricity cause problems, particularly in the electronics industry. This technical report gives rules which, if followed, will minimize the unwanted effects of electrostatic discharge. Additional information on how the technical report should be applied is contained in IEC 61340-5-2 (user guide).

When the requirements of this technical report are applied, they will provide a low risk of damage to the vast majority of components and assemblies used in the electronics industry, particularly for devices which have a damage threshold of greater than 100 V (human body model). Where ultra-sensitive devices are used, additional specialist precautions will need to be applied.

The definitions used in this technical report apply for this document, and different definitions or ranges may apply in some other areas of electrostatics.
1 Scope

This technical report specifies the general requirements for the protection of electrostatic discharge sensitive devices (ESDS) from electrostatic discharges and fields. It applies only to the manufacture and use of electronic devices.

This technical report specifies how to design, use and control a protected area to ensure that electrostatic sensitive devices, having a withstand threshold voltage of 100 V (human body model) or higher, can be handled with a minimum risk of damage resulting from electrostatic phenomena.

Normal precautions given in this report are applicable for areas with clean room types in excess of ISO 14644-1 class 5. Alternative precautions may be required in clean rooms of ISO 14644-1 class 5 or less if contamination is formed as a result of using the procedures specified in this technical report.

Although this technical report does not include requirements for personnel safety, attention is drawn to the need for all concerned to comply with relevant local statutory requirements regarding the health and safety of all persons in all places of work, including those covered by this technical report. Generally, there is no minimum value of resistance for the protection of ESDS (see 3.2). However, a minimum resistance value may be required for the safety of personnel. See the relevant requirements and/or publications IEC 61010-1, IEC 60479, IEC 60536, IEC 60364.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 61340. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of IEC 61340 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

IEC 60093:1980, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials

IEC 60167:1964, Methods of test for the determination of the insulation resistance of solid insulating materials

IEC 60364 (all parts), Electrical installations of buildings
3 Definitions

For the purpose of this technical report, the following definitions apply.

3.1 electrostatic discharge (ESD) transfer of charge between bodies at different electrostatic potentials caused by direct contact or induced by electrostatic field

3.2 electrostatic discharge sensitive device (ESDS) discrete device, integrated circuit or assembly that may be damaged by electrostatic fields or electrostatic discharge encountered in routine handling, testing or transit

3.3 bonding connecting together of non-insulating elements by means of a conductor

3.4 clean room area with a specified maximum number and size of airborne particles per unit volume

3.5 device hazardous voltage voltage capable of damaging an ESDS

1) To be published.