CONTENTS

FOREWORD... 13

INTRODUCTION... 15

1 General .. 17
 1.1 Scope .. 17
 1.2 Normative references .. 17
 1.3 Terms and definitions .. 18
 1.4 Abbreviations ... 35
 1.5 Conventions .. 37
 1.6 General considerations ... 43
 1.7 Conformance Test ... 48

2 Real-Time protocols .. 49
 2.1 General ... 49
 2.2 Variables – Services and Protocols .. 51
 2.3 Messages Services and Protocols .. 72
 2.4 Presentation and encoding of transmitted and stored data.................................... 173

3 Multifunction Vehicle Bus .. 193
 3.1 General ... 193
 3.2 Physical Layer ... 195
 3.3 Medium-dependent signalling ... 229
 3.4 Frames and telegrams ... 236
 3.5 Link Layer Control ... 242
 3.6 Medium allocation .. 248
 3.7 Mastership transfer .. 260
 3.8 Link Layer Interface ... 265

4 Wire Train Bus (WTB) .. 273
 4.1 General ... 273
 4.2 Physical layer .. 275
 4.3 Medium-dependent signalling .. 296
 4.4 Frames and telegrams ... 304
 4.5 Link Layer Control ... 308
 4.6 Medium allocation .. 329
 4.7 Inauguration .. 331
 4.8 Link layer interface .. 380

5 Train Network Management .. 393
 5.1 General ... 393
 5.2 Manager, Agents and interfaces ... 394
 5.3 Managed objects .. 397
 5.4 Services and management messages .. 407
 5.5 Interface Procedures ... 469

Annex A (informative) Tutorial on the TCN architecture .. 473
Annex B (normative) Guidelines for conformance testing .. 599

Bibliography .. 600
Figure 43 – Reference device and structure of the document ... 195
Figure 44 – MVB configuration .. 196
Figure 45 – Transceiver interface .. 199
Figure 46 – Example of ESD segment .. 201
Figure 47 – Example of terminator ... 202
Figure 48 – ESD backplane section (double-line) ... 204
Figure 49 – ESD connector arrangement .. 205
Figure 50 – ESD terminator connector arrangement .. 206
Figure 51 – Example of start of frame (ESD) ... 207
Figure 52 – End of an ESD frame (both cases) ... 208
Figure 53 – EMD medium .. 209
Figure 54 – Shielding (single-line segment) .. 211
Figure 55 – Single-line device attachment .. 212
Figure 56 – Double-line device attachment to EMD ... 213
Figure 57 – EMD connectors arrangement .. 214
Figure 58 – EMD terminator strapping ... 215
Figure 59 – Measurement of an EMD device ... 216
Figure 60 – Attenuation measurement .. 216
Figure 61 – Example of start of an EMD frame .. 217
Figure 62 – EMD transmitter test circuits .. 218
Figure 63 – Example of pulse waveform at EMD transmitter .. 220
Figure 64 – Example of end of EMD frame ... 221
Figure 65 – EMD receiver test signal ... 222
Figure 66 – Optical link .. 224
Figure 67 – Optical connector (dimensions in millimetres) ... 225
Figure 68 – Example of start of OGF frame .. 226
Figure 69 – Edge jitter .. 227
Figure 70 – Example of active star coupler .. 228
Figure 71 – Example of a duplicated star coupler ... 229
Figure 72 – “0” and “1” data encoding .. 229
Figure 73 – Non-Data symbols encoding .. 230
Figure 74 – Master Start Delimiter ... 230
Figure 75 – Slave Start Delimiter .. 231
Figure 76 – Example of End Delimiter for EMD medium .. 231
Figure 77 – Example of a valid frame (OGF medium) .. 232
Figure 78 – Signal skew .. 233
Figure 79 – Example of repeater for single-line attachment ... 235
Figure 80 – Example of repeater connecting a double-line to a single line segment 236
Figure 81 – Master Frame Format .. 236
Figure 82 – Slave Frames ... 237
Figure 83 – Telegram timing .. 238
Figure 84 – Example of Reply delay .. 239
Figure 85 – Frame spacing at the source side .. 240
Figure 86 – Frame spacing at the destination(s) ... 240
Figure 87 – Frame spacing at the master side .. 241
Figure 88 – Master Frame contents .. 243
Figure 89 – Word ordering in a Slave Frame ... 245
Figure 90 – Process Data telegram .. 245
Figure 91 – Message Data telegram .. 247
Figure 92 – Supervisory Data telegram .. 248
Figure 93 – Basic Periods .. 249
Figure 94 – Example of construction of the Macro_Cycle .. 251
Figure 95 – General_Event_Request frame format .. 255
Figure 96 – Group_Event_Request frame (M = 6, C = ABCDEF) .. 256
Figure 97 – Single_Event_Request frame ... 256
Figure 98 – Event_Identifier_Response frame .. 257
Figure 99 – Device_Status_Request .. 257
Figure 100 – Device_Status_Response ... 258
Figure 101 – Device_Status of Class 1 device ... 258
Figure 102 – Device_Status of Class 2/3/4/5 device ... 258
Figure 103 – Device_Status of a device with Bus Administrator capability 259
Figure 104 – Device_Status of a device with Gateway capability 259
Figure 105 – Mastership Transfer states .. 263
Figure 106 – Device_Status_Request (sent by current master) ... 264
Figure 107 – Device_Status_Response (sent by proposed master) 264
Figure 108 – Mastership_Transfer_Request (sent by current master) 265
Figure 109 – Mastership_Transfer_Response (sent by proposed next master) 265
Figure 110 – Link Layer Layering .. 266
Figure 111 – Wire Train Bus .. 273
Figure 112 – Reference model of the WTB .. 275
Figure 113 – Train Composition (two Intermediate Nodes shown) 276
Figure 114 – Vehicle measurement .. 277
Figure 115 – Connected nodes in regular operation .. 278
Figure 116 – Double-line attachment ... 278
Figure 117 – Grounded shield concept ... 281
Figure 118 – Floating shield concept .. 282
Figure 119 – Terminator .. 282
Figure 120 – Direct node attachment (optional double-line) ... 283
Figure 121 – Indirect attachment .. 284
Figure 122 – WTB connector, front view ... 285
Figure 123 – Example of MAU Structure ... 286
Figure 124 – Node with redundant Line Units .. 288
Figure 125 – Attenuation measurement .. 289
Figure 126 – Shield grounding in the Line Unit .. 290
Figure 127 – Fritting source and load ... 290
Figure 128 – Transmitter test circuits .. 292
Figure 172 – Set to End telegram ... 325
Figure 173 – Format of SetEnd Request ... 326
Figure 174 – Format of SetEnd Response .. 326
Figure 175 – Topography telegram .. 327
Figure 176 – Format of Topography Request ... 327
Figure 177 – Format of Topography Response .. 328
Figure 178 – Structure of the Basic Period .. 329
Figure 179 – Node position numbering ... 332
Figure 180 – Format of Node Descriptor ... 333
Figure 181 – Format of Node Report ... 334
Figure 182 – Format of User Report .. 334
Figure 183 – Format of Composition Strength .. 335
Figure 184 – Master_Report ... 336
Figure 185 – Format of Topo Counter ... 336
Figure 186 – Format of Master Topo .. 336
Figure 187 – Timing Diagram of detection protocol 339
Figure 188 – Major node states and application settings 340
Figure 189 – Node processes (End Setting) ... 341
Figure 190 – AUXILIARY_PROCESS states .. 347
Figure 191 – NAMING_RESPONSE macro ... 348
Figure 192 – States of MAIN PROCESS .. 349
Figure 193 – Macro ‘START_NODE’ ... 352
Figure 194 – Procedure REQUEST_RESPONSE 354
Figure 195 – Procedures ‘SET_TO_INT’ and ‘SET_TO_END’ 355
Figure 196 – Macro INIT_MASTER .. 356
Figure 197 – Macro NAMING_MASTER ... 357
Figure 198 – Macro ASK_END ... 358
Figure 199 – Procedure NAME_ONE ... 361
Figure 200 – Macro TEACHING_MASTER ... 363
Figure 201 – Macro UNNAMING_MASTER’ ... 364
Figure 202 – Macro ‘REGULAR_MASTER’ ... 366
Figure 203 – Macro CHECK_DESC ... 367
Figure 204 – Macro PERIODIC_POLL ... 369
Figure 205 – Macro MESSAGE_POLL .. 370
Figure 206 – States ‘UNNAMED_SLAVE’……………….. 372
Figure 207 – States ‘NAMED_SLAVE’ ... 374
Figure 208 – Macro ‘LEARNING_SLAVE’ .. 376
Figure 209 – Macro ‘REGULAR_SLAVE’ .. 378
Figure 210 – Link layer layering ... 380
Figure 211 – Management messages ... 395
Figure 212 – Agent Interface on a (gateway) Station 396
Figure 213 – Station_Status ... 398
Figure A.1 – Train_Bus and Vehicle_Busses ... 475
Figure A.2 – Data transfer over the Train Communication Network 477
Figure A.3 – Example of Periodic_Data and Sporadic_Data transmission............................. 478
Figure A.4 – TCN Services .. 479
Figure A.5 – Application Tasks and TCN services... 480
Figure A.6 – Layering of the Real-Time Protocols .. 480
Figure A.7 – Variable transmission and Ports ... 482
Figure A.8 – Broadcasting of source-addressed Process_Data ... 483
Figure A.9 – Port and Traffic_Store ... 484
Figure A.10 – Ports on the Wire_Train_Bus ... 486
Figure A.11 – Dataset ... 487
Figure A.12 – Validity bits .. 488
Figure A.13 – Multiple Process_Variable instances ... 489
Figure A.14 – Instances of a Process_Variable.. 490
Figure A.15 – Transmission of Periodic_Data through the network 491
Figure A.16 – Individual copying .. 494
Figure A.17 – Cluster transfer ... 495
Figure A.18 – Application_Layer and Link_Layer Interface to Process_Variables 496
Figure A.19 – Several Applications access the same Traffic_Store 496
Figure A.20 – Application access to several Traffic_Stores .. 497
Figure A.21 – Two-level hierarchy ... 498
Figure A.22 – Call_Message/Reply_Message exchange ... 500
Figure A.23 – Example of actual architecture... 501
Figure A.24 – Message_Data transmission over queues .. 502
Figure A.25 – Link_Layer in the OSI hierarchy .. 503
Figure A.26 – Message_Data format ... 504
Figure A.27 – Node position numbering ... 504
Figure A.28 – Vehicle numbering according to UIC 556 – not TCN 505
Figure A.29 – Example of vehicle types .. 506
Figure A.30 – Nodes and Vehicle_Bus Devices ... 507
Figure A.31 – Vehicle_Bus spanning several vehicles .. 507
Figure A.32 – System view of communication .. 508
Figure A.33 – Station_Directory ... 509
Figure A.34 – Actual Station location ... 510
Figure A.35 – Dual-processor Node ... 511
Figure A.36 – Further hierarchical level .. 512
Figure A.37 – Functions within a passenger coach ... 512
Figure A.38 – Mapping of Functions to Devices ... 513
Figure A.39 – Function view of communication .. 514
Figure A.40 – Function_Directory ... 514
Figure A.41 – Function Directories in a three-level hierarchy .. 515
Figure A.42 – End-to-end Message_Data transfer .. 516
Figure A.43 – Packet forwarding over the network ... 517
Figure A.44 – Network_Address (origin or final) for messages ... 517
Figure A.45 – WTB and MVB Message_Data frame with Network_Addresses 518
Figure A.46 – Routing messages over the Train_Bus... 520
Figure A.47 – Execution of the transport control ... 521
Figure A.48 – Message Transport_Layer in the OSI model... 522
Figure A.49 – Sliding window protocol .. 523
Figure A.50 – Frame exchange at the transport level .. 524
Figure A.51 – Packet formats (bus-independent) .. 526
Figure A.52 – Multicast transmission .. 527
Figure A.53 – Remote Procedure Call .. 529
Figure A.54 – Call nesting .. 530
Figure A.55 – Example of message exchange at the session level .. 531
Figure A.56 – Message Software structure .. 532
Figure A.57 – Multifunction_Vehicle_Bus in a locomotive ... 537
Figure A.58 – Multifunction_Vehicle_Bus in a coach ... 537
Figure A.59 – Electrical Short Distance medium ... 539
Figure A.60 – MVB spanning three vehicles ... 540
Figure A.61 – Vehicle_Bus optical star configuration .. 540
Figure A.62 – Topology of the Vehicle_Bus .. 541
Figure A.63 – Bus_Controller ... 542
Figure A.64 – Bus interface for class 1 device ... 543
Figure A.65 – Bus Interface for Class 2/3 devices ... 544
Figure A.66 – Frame delimiter, Manchester-encoded data and Check_Sequence 545
Figure A.67 – Telegram ... 545
Figure A.68 – Master_Frame and Slave_Frame formats ... 546
Figure A.69 – MVB Process_Data Telegram.. 548
Figure A.70 – MVB Message_Data Telegram .. 548
Figure A.71 – MVB Supervisory_Data Telegram .. 549
Figure A.72 – Ports in the Traffic_Store ... 550
Figure A.73 – MVB Traffic .. 551
Figure A.74 – Periodic traffic configuration .. 551
Figure A.75 – Single response to a General_Event_Request (Start) frame 553
Figure A.76 – Event_Round with single response (no arbitration) .. 553
Figure A.77 – First Event_Arbitration .. 554
Figure A.78 – Group_Event_Request .. 555
Figure A.79 – Event_Arbitration tree ... 555
Figure A.80 – Fully redundant bus ... 558
Figure A.81 – MVB redundant optical layout ... 558
Figure A.82 – Mastership transfer with multiple masters ... 559
Figure A.83 – Wire_Train_Bus ... 560
Figure A.84 – WTB topology .. 561
Figure A.85 – WTB cable arrangement (top view) .. 562
Figure A.86 – Medium_Attachment_Unit (switches shown for an End_Node) 563
Figure A.87 – WTB MAU with duplicated Line_Unit .. 564
Table 56 – MVB_Control object ... 269
Table 57 – MVB_Devices object .. 270
Table 58 – MVB_Administrator object ... 271
Table 59 – LS_V_REPORT encoding .. 273
Table 60 – WTB connector pin assignment .. 285
Table 61 – Signals of the Line Unit Interface ... 303
Table 62 – Link Control encoding .. 310
Table 63 – NodeControl data structure .. 342
Table 64 – MyStatus data structure ... 343
Table 65 – Shared Variables of a node ... 344
Table 66 – Variables of Main Process ... 344
Table 67 – Lists of Main Process ... 345
Table 68 – ‘START_NODE’ ... 350
Table 69 – ‘MASTER STATES’ ... 350
Table 70 – ‘SLAVE STATES’ .. 351
Table 71 – Time constant values ... 379
Table 72 – Example of mvb_administrator_list .. 429
Table A.1 – Summary of the Train Communication Network ... 474
Table A.2 – Summary of the Real-Time Protocols ... 481
Table A.3 – Packet formats (bus-independent) ... 525
Table A.4 – Summary of data types .. 535
Table A.5 – Type equivalence ... 536
Table A.6 – Summary of the Multifunction_Vehicle_Bus .. 538
Table A.7 – MVB throughput for 20 m and 2000 m (physical layer) 547
Table A.8 – F_codes of the MVB (Master_Frame types) .. 548
Table A.9 – Example of Event_Round .. 556
Table A.10 – Arbitration delay in function of the number of simultaneous events 557
Table A.11 – Summary of the WTB .. 560
Table A.12 – Parameters for supervisory frames ... 587
Table A.13 – Summary of the Train Network Management .. 590
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61375-1 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways.

This second edition cancels and replaces the first edition published in 1999 and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- technical amendments concern Clauses 2, 3 and 4. Some inconsistencies between clauses have been solved, some parameters and values have been changed according to the suggestion of the experts of National Committees involved in the application of the standard;

- the pre-emphasis has been introduced for the MVB transmitted signal;
Annex B has been superseded by IEC 61375-2.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1013/FDIS</td>
<td>9/1033/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The following items are to be taken into consideration:

- in France the needs of data communication between equipment in vehicles and between vehicles are dealt with using products covered by other standards or technical specifications (many trains introduced in the last 10 years are equipped with data communication systems; care has been taken to make use as much as possible of different relevant industrial standards) incompatible with the provisions of this standard and making it inapplicable in that country;
- for instance, in modern rolling stock recently commissioned in France, technical specifications for train communication networks comply with IEC 61158-2 and EN 50170, which are the field bus international standards. On the other hand, token-passing bus access method has been used in technical specifications for data communication networks for the latest generation of high-speed trains;
- in China, for closed trains and multiple units, the technical specifications of a train communication network may be based on an agreement between user and manufacturer alternatively to this standard.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.
INTRODUCTION

This part of IEC 61375 defines interfaces so as to achieve plug-in compatibility:

a) between equipment located in different vehicles, and
b) between equipment located within the same vehicle.

This standard defines these interfaces as connections to a data communication network, called the Train Communication Network (TCN).

The TCN has a hierarchical structure with two levels of busses, a Train Bus and a Vehicle Bus:

a) for interconnecting vehicles in Open Trains (see definition) such as international UIC trains, this standard specifies a Train Bus called the Wire Train Bus (WTB);
b) for connecting standard on-board equipment, this standard specifies a Vehicle Bus called the Multifunction Vehicle Bus (MVB).

In the TCN architecture, all busses share the same Real-Time Protocols, which offer two communication services:

a) Process Variables, a distributed, real-time database, periodically refreshed through broadcasting;
b) messages, transmitted on demand either as:
 • unicast messages (point-to-point) or/and
 • multicast messages.

All busses in the TCN share a common Network Management, which allows debugging, commissioning and maintenance over the network.

Guidelines for conformance testing are included in this standard.

The TCN is structured similarly to the Open System Interconnection model defined in ISO/IEC 7498-1 (see Figure 1).
NOTE The circled numbers refer to the clauses and annexes of this standard.

Figure 1 – Layering of the TCN

This standard has been, for editorial reasons, divided into five clauses and two annexes:

Clause 1: General,
- Definitions and informative overview;
Clause 2: Real-Time Protocols,
- Variables: Link Layer Interface and Application Layer Interface;
- Messages: Link Layer Interface, Protocols, Application Layer Interface;
- Data Representation;
Clause 3: Multifunction Vehicle Bus,
- Physical Layer, Link Layer and Link Layer Management;
Clause 4: Wire Train Bus,
- Physical Layer, Link Layer and Link Layer Management;
Clause 5: Train Network Management,
- Configuration, supervision and control of the network;
Annex A: Tutorial on the Train Communication Network
Annex B: Guidelines for Conformance Test.
1 General

1.1 Scope

This part of IEC 61375 applies to data communication in Open Trains, i.e. it covers data communication between vehicles of the said open trains and data communication within the vehicles of the said open trains.

The applicability of this standard to the train communication bus (WTB) allows for interoperability of individual vehicles within Open Trains in international traffic. The data communication bus inside vehicles (MVB) is given as recommended solution to cope with the said TCN. In any case, proof of compatibility between WTB and a proposed vehicle bus will have to be brought by the supplier.

This standard may be additionally applicable to closed trains and multiple unit trains when so agreed between purchaser and supplier.

NOTE 1 For a definition of Open Trains, Multiple Unit Trains and Closed Trains, see 1.3.
NOTE 2 Road vehicles such as buses and trolley buses are not considered in this standard.

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60096-1: Radio-frequency cables – Part 1: General requirements and measuring methods

IEC 60245-1, Rubber insulated cables – Rated voltages up to and including 450/750 V – Part 1: General requirements

IEC 60304, Standard colours for insulation for low-frequency cables and wires

IEC 60332-1-1, Tests on electric and optical fibre cables under fire conditions – Part 1-1: Test for vertical flame propagation for a single insulated wire or cable – Apparatus

IEC 60571, Electronic equipment used on rail vehicles

IEC 60794-1-1, Optical fibre cables – Part 1-1: Generic specification – General

IEC 60807 (all parts), Rectangular connectors for frequencies below 3 MHz

IEC 60870-5-1, Telecontrol equipment and systems. Part 5: Transmission protocols - Section One: Transmission frame formats

IEC 60874-10-1, Connectors for optical fibres and cables – Part 10-1:Detail specification for fibre optic connector type BFOC/2,5 terminated to multimode fibre type A1
IEC 60874-10-2, Connectors for optical fibre and cables – Part 10-2: Detail specification for fibre optic connector BFOC/2.5 terminated to single-mode fibre type B1

IEC 60874-10-3, Connectors for optical fibre and cables – Part 10-3: Detail specification for fibre optic connector BFOC/2.5 terminated to single and multimode fibre

ISO/IEC 8482, Information technology – Telecommunications and information exchange between systems – Twisted pair multipoint interconnections

ISO/IEC 8802-2, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 2: Logical link control

ISO/IEC 8824 (all parts), Information technology – Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825 (all parts), Information technology – ASN.1 encoding rules

ISO/IEC 8859-1, Information technology – 8-bit single-byte coded graphic character sets – Part 1: Latin alphabet No. 1

ISO/IEC 9646 (all parts), Information technology – Open Systems Interconnection – Conformance testing methodology and framework

ISO/IEC 10646, Information Technology – Universal Multiple Octet Coded Character Set (UCS)

ISO/IEC 13239, Information technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures

ITU-T Recommendation V24, List of definitions for interchange circuits between data terminal equipment (DTE) and data-circuit terminating equipment (DCE)

ITU-T Recommendation Z.100, Specification and Description Language (SDL)

UIC 556 ORE B 108.3 Fiche No. 556, Information transmission in the train (train-bus)

UIC 557, Diagnostics on passenger rolling stock

IEEE 754, Standard for Binary Floating-Point Arithmetic