INTERNATIONAL STANDARD

IEC 61499-1

First edition
2005-01

Function blocks –
Part 1: Architecture

© IEC 2005 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

For price, see current catalogue
CONTENTS

FOREWORD5
INTRODUCTION ..7

1 Scope8
2 Normative references ...8
3 Terms and definitions ...9
4 Reference models ..18
 4.1 System model... 18
 4.2 Device model ... 19
 4.3 Resource model .. 20
 4.4 Application model .. 21
 4.5 Function block model .. 22
 4.5.1 Characteristics of function block instances 22
 4.5.2 Function block type specifications 23
 4.5.3 Execution model for basic function blocks 24
 4.6 Distribution model ... 26
 4.7 Management model ... 26
 4.8 Operational state models ... 28

5 Specification of function block, subapplication and adapter interface types28
 5.1 Overview...28
 5.2 Basic function blocks...29
 5.2.1 Type declaration ..29
 5.2.2 Behavior of instances...32
 5.3 Composite function blocks ...34
 5.3.1 Type specification..34
 5.3.2 Behavior of instances...36
 5.4 Subapplications...37
 5.4.1 Type specification..37
 5.4.2 Behavior of instances...38
 5.5 Adapter interfaces ...39
 5.5.1 General principles..39
 5.5.2 Type specification..40
 5.5.3 Usage..40
 5.6 Exception and fault handling..43

6 Service interface function blocks ..43
 6.1 General principles ...43
 6.1.1 General ... 43
 6.1.2 Type specification ... 44
 6.1.3 Behavior of instances .. 45
 6.2 Communication function blocks ..47
 6.2.1 Type specification ... 47
 6.2.2 Behavior of instances .. 48
 6.3 Management function blocks ..49
 6.3.1 Requirements .. 49
 6.3.2 Type specification ... 49
 6.3.3 Behavior of managed function blocks 52
7 Configuration of functional units and systems ...55
 7.1 Principles of configuration ...55
 7.2 Functional specification of resource and device types ..55
 7.2.1 Functional specification of resource types ..55
 7.2.2 Functional specification of device types ...56
 7.3 Configuration requirements ..56
 7.3.1 Configuration of systems ..56
 7.3.2 Specification of applications ...56
 7.3.3 Configuration of devices and resources ..57
 7.3.4 Configuration of network segments and links ..58

Annex A (normative) Event function blocks ..59
Annex B (normative) Textual syntax ...66
Annex C (informative) Object models ...77
Annex D (informative) Relationship to IEC 61131-3 ..84
Annex E (informative) Information exchange ..87
Annex F (informative/informative) Textual specifications ..95
Annex G (informative) Attributes ..108

Figure 1 – System model ..19
Figure 2 – Device model (example: Device 2 from Figure 1) ..20
Figure 3 – Resource model ...21
Figure 4 – Application model ..22
Figure 5 – Characteristics of function blocks ...23
Figure 6 – Execution model ..25
Figure 7 – Execution timing ..25
Figure 8 – Distribution and management models ...27
Figure 9 – Function block and subapplication types ..29
Figure 10 – Basic function block type declaration ..30
Figure 11 – ECC example ..32
Figure 12 – ECC operation state machine ..33
Figure 13 – Composite function block PI_REAL example ...35
Figure 14 – Basic function block PID_CALC example ...36
Figure 15 – Subapplication PI_REAL_APPL example ...38
Figure 16 – Adapter interfaces – Conceptual model ...39
Figure 17 – Adapter type declaration – graphical example ..40
Figure 18 – Illustration of provider and acceptor function block type declarations42
Figure 19 – Illustration of adapter connections ..43
Figure 20 – Example service interface function blocks ...45
Figure 21 – Examples of time-sequence diagrams ...46
Figure 22 – Generic management function block type ..49
Figure 23 – Service primitive sequences for unsuccessful service50
Figure 24 – Operational state machine of a managed function block54
Figure A.1 – Event split and merge ...65
Figure C.1 – ESS overview ...77
Figure C.2 – Library elements ..78
Figure C.3 – Declarations ..79
Figure C.4 – Function block network declarations ...80
Figure C.5 – Function block type declarations ...81
Figure C.6 – IPMCS overview ...81
Figure C.7 – Function block types and instances ...83
Figure D.1 – Example of a “simple” function block type ..84
Figure E.1 – Type specifications for unidirectional transactions88
Figure E.2 – Connection establishment for unidirectional transactions88
Figure E.3 – Normal unidirectional data transfer ...88
Figure E.4 – Connection release in unidirectional data transfer89
Figure E.5 – Type specifications for bidirectional data transfer89
Figure E.6 – Connection establishment for bidirectional data transfer90
Figure E.7 – Bidirectional data transfer ...90
Figure E.8 – Connection release in bidirectional data transfer90

Table 1 – States and transitions of ECC operation state machine33
Table 2 – Standard inputs and outputs for service interface function blocks44
Table 3 – Service primitive semantics ..47
Table 4 – Variable semantics for communication function blocks48
Table 5 – Service primitive semantics for communication function blocks48
Table 6 – CMD input values and semantics ..50
Table 7 – STATUS output values and semantics ..50
Table 8 – Command syntax ..51
Table 9 – Semantics of actions in Figure 24 ..54
Table A.1 – Event function blocks ..59
Table C.1 – ESS class descriptions ..78
Table C.2 – Syntactic productions for library elements ..78
Table C.3 – Syntactic productions for declarations ...79
Table C.4 – IPMCS classes ..82
Table D.1 – Semantics of STATUS values ..85
Table E.1 – COMPACT encoding of fixed length data types ...94
Table G.1 – Elements of attribute definitions ..109
INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUNCTION BLOCKS –

Part 1: Architecture

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61499-1 has been prepared by IEC technical committee 65: Industrial-process measurement and control.

This standard cancels and replaces IEC/PAS 61499-1 published in 2000. This first edition constitutes a technical revision.

The following major technical changes have occurred between the PAS edition and this edition:

a) Syntax for network segments, links and parameters has been added in Clause B.3 to correspond to the system model of 4.1.

b) Syntax for parameters instead of constant data connections has been included for parameterization of function blocks, devices and resources in Clauses B.2 and B.3 for better consistency with IEC 61131-3.

c) The execution control model of 5.2.2.2 has been simplified and updated for consistency with modern models of state machine control.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>65/338/CDV</td>
<td>65/346/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61499 consists of the following parts, under the general title Function blocks:

Part 1: Architecture
Part 2: Software tool requirements
Part 3: Tutorial information
Part 4: Rules for compliance profiles ¹

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

A bilingual version of this standard may be issued at a later date.

¹ Under consideration.
INTRODUCTION

The IEC 61499 series consists of four Parts:

d) Part 1 (this part of IEC 61499) contains:
 - general requirements, including scope, normative references, definitions, and reference models;
 - rules for the declaration of function block types, and rules for the behavior of instances of the types so declared;
 - rules for the use of function blocks in the configuration of distributed Industrial-Process Measurement and Control Systems (IPMCSs);
 - rules for the use of function blocks in meeting the communication requirements of distributed IPMCSs;
 - rules for the use of function blocks in the management of applications, resources and devices in distributed IPMCSs.

e) Part 2 defines requirements for software tools to support the following systems engineering tasks enumerated in Clause 1 of this part of IEC 61499:
 - the specification of function block types;
 - the functional specification of resource types and device types;
 - the specification, analysis, and validation of distributed IPMCSs;
 - the configuration, implementation, operation, and maintenance of distributed IPMCSs;
 - the exchange of information among software tools.

f) Part 3 has the purpose of increasing the understanding, acceptance, and both generic and domain-specific applicability of IPMCS architectures and software tools meeting the requirements of the other Parts, by providing:
 - answers to Frequently Asked Questions (FAQs) regarding the IEC 61499 series;
 - examples of the use of IEC 61499 constructs to solve frequently encountered problems in control and automation engineering.

g) Part 4 defines rules for the development of compliance profiles which specify the features of IEC 61499-1 and IEC 61499-2 to be implemented in order to promote the following attributes of IEC 61499-based systems, devices and software tools:
 - interoperability of devices from multiple suppliers;
 - portability of software between software tools of multiple suppliers; and
 - configurability of devices from multiple vendors by software tools of multiple suppliers.
1 Scope

This part of IEC 61499 defines a generic architecture and presents guidelines for the use of function blocks in distributed Industrial Process Measurement and Control Systems (IPMCSs). This architecture is presented in terms of implementable reference models, textual syntax and graphical representations. These models, representations and syntax can be used for:

- the specification and standardization of function block types;
- the functional specification and standardization of system elements;
- the implementation independent specification, analysis, and validation of distributed IPMCSs;
- the configuration, implementation, operation, and maintenance of distributed IPMCSs;
- the exchange of information among software tools for the performance of the above functions.

NOTE 1 This part of IEC 61499 does not restrict or specify the functional capabilities of IPMCSs or their system elements, except as such capabilities are represented using the elements defined herein. IEC 61499-4 addresses the extent to which the elements defined in this part of IEC 61499 may be restricted by the functional capabilities of compliant systems, subsystems, and devices.

Part of the purpose of this part of IEC 61499 is to provide reference models for the use of function blocks in other standards dealing with the support of the system life cycle, including system planning, design, implementation, validation, operation and maintenance. The models given in this part of IEC 61499 are intended to be generic, domain independent and extensible to the definition and use of function blocks in other standards or for particular applications or application domains. It is intended that specifications written according to the rules given in this part of IEC 61499 be concise, implementable, complete, unambiguous, and consistent.

NOTE 2 The provisions of this part of IEC 61499 alone are not sufficient to ensure interoperability among devices of different vendors. Standards complying with this part of IEC 61499 may specify additional provisions to ensure such interoperability.

NOTE 3 Standards complying with this part of IEC 61499 may specify additional provisions to enable the performance of system, device, resource and application management functions.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 8824-1, Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation
ISO/IEC 8825-1, *Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)*

ISO/IEC 10646, *Information technology - Universal Multiple-Octet Coded Character Set (UCS)*

ISO/IEC 10731, *Information technology - Open Systems Interconnection - Basic Reference Model - Conventions for the definition of OSI services*