# NORME 

## Composants pour parafoudres basse tension -

## Partie 341:

Spécifications pour lesparafoudres à thyristor


## Components for low-voltage surge protective devices

## Part 341:

Specification for thyristor surge
suppressors (TSS)
© IEC 2001 Droits de reproduction réservés - Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехничесная Комиссия

CODE PRIX PRICE CODE

## SOMMAIRE

AVANT-PROPOS ..... 8
1 Domaine d'application ..... 10
2 Références normatives ..... 10
3 Termes, symboles littéraux et définitions ..... 12
3.1 Termes paramétriques, symboles littéraux et définitions ..... 12
3.1.1 Valeurs assignées des bornes principales ..... 12
3.1.2 Caractéristiques des bornes maîtresses ..... 14
3.1.3 Paramètres complémentaires et dérivés. ..... 16
3.1.4 Paramètres relatifs à la température ..... 18
3.1.5 Paramètres de gâchette ..... 20
3.2 Termes et définitions pour les TSS, les bornes et la terminologie canacteristique. ..... 24
3.2.1 TSS ..... 24
3.2.2 Bornes ..... 26
3.2.3 Caractéristiques ..... 28
4 Fonction fondamentale et description des composans. ..... 34
4.1 Types de TSS ..... 34
4.2 Structure fondamentale du dispositif ..... 38
4.3 Circuit équivalent ..... 40
4.4 Caractéristiques du quadrant/de commytation ..... 42
4.4.1 Zone de blocage ..... 42
4.4.2 Zone d'avalanche. ..... 42
4.4.3 Zone/à résistance négative ..... 44
4.4.4 Zone d'étatpassant ..... 44
4.5 Critère de performance d'un TSS ..... 44
4.5.1 Charge da système ..... 44
4.5.2 Protection deV'équipement ..... 46
4.5.3 Tenqe dansle temps ..... 46
4.6 Structures complémentaires du TSS ..... 46
4.6.1 TSS à gâchette ..... 46
46.2 TSS à bløcage unidirectionnel ..... 48
4.6.3 TSS à conduction unidirectionnelle ..... 50
4.6.4 TSS bidirectionnel ..... 50
4.6.5 TSS bidirectionnel à triac ..... 52
5 Méthodes d'essais normalisés ..... 52
5.1 Conditions d'essais ..... 52
5.1.1 Conditions atmosphériques normales ..... 52
5.1.2 Erreurs de mesure ..... 54
5.1.3 Précision de la mesure ..... 54
5.1.4 Forme et valeurs de choc spécifiées ..... 54
5.1.5 TSS multiples ..... 54
5.1.6 Essai des TSS à gâchette ..... 54
5.2 Conditions de fonctionnement ..... 56
5.2.1 Conditions normales de fonctionnement ..... 56
5.2.2 Conditions anormales ..... 56

## CONTENTS

FOREWORD ..... 9
1 Scope ..... 11
2 Normative references ..... 11
3 Terms, letter symbols and definitions ..... 13
3.1 Parametric terms, letter symbols and definitions ..... 13
3.1.1 Main terminal ratings ..... 13
3.1.2 Main terminal characteristics ..... 15
3.1.3 Additional and derived parameters ..... 17
3.1.4 Temperature related parameters ..... 19
3.1.5 Gate terminal parameters ..... 21
3.2 Terms and definitions for TSS, terminals and characteristic terminology.. ..... 25
3.2.1 TSS ..... 25
3.2.2 Terminals ..... 27
3.2.3 Characteristic terminology ..... 29
4 Basic function and component description ..... 35
4.1 TSS types ..... 35
4.2 Basic device structure ..... 39
4.3 Device equivalent circuit ..... 41
4.4 Switching quadrant characte istics ..... 43
4.4.1 Off-state region ..... 43
4.4.2 Breakdown region ..... 43
4.4.3 Negative resistanceregion ..... 45
4.4.4 Qn-state region ..... 45
4.5 Performanee criteria of TSS ..... 45
4.5.1 System loading ..... 45
4.5.2 Equipment protection ..... 47
4.5.3 Durability ..... 47
4.6 Additionar TSS structures ..... 47
4.6. 1 Gated TSS ..... 47
4.6.2 Unidirectional blocking TSS ..... 49
4.6.3 Unidirectional conducting TSS ..... 51
4.6.4 Bidirectional TSS ..... 51
4.6.5 Bidirectional TRIAC TSS ..... 53
5 Standard test methods ..... 53
5.1 Test conditions ..... 53
5.1.1 Standard atmospheric conditions ..... 53
5.1.2 Measurement errors ..... 55
5.1.3 Measurement accuracy ..... 55
5.1.4 Designated impulse shape and values ..... 55
5.1.5 Multiple TSS ..... 55
5.1.6 Gated TSS testing ..... 55
5.2 Service conditions ..... 57
5.2.1 Normal service conditions ..... 57
5.2.2 Abnormal service conditions ..... 57
5.3 Modes de défaillance et d'avarie ..... 56
5.3.1 Défaut de dégradation ..... 56
5.3.2 Défaut à courant élevé de blocage ..... 58
5.3.3 Défaut à courant inverse élevé ..... 58
5.3.4 Défaut à tension de retournement élevée ..... 58
5.3.5 Défaut à courant de maintien faible ..... 58
5.3.6 Défaut catastrophique (cataleptique) ..... 58
5.3.7 Défaut en court-circuit ..... 58
5.3.8 Défaut en circuit ouvert ..... 58
5.3.9 Défaut critique ..... 58
5.3.10 Fonctionnement «sûr» ..... 60
5.4 Procédures d'essais des caractéristiques ..... 60
5.4.1 Tension de pointe répétitive à l'état bloqué, $V_{D R M}$ ..... 60
5.4.2 Courant de crête répétitif à l'état passant, $I_{\text {TRM }}$ ..... 62
5.4.3 Courant de crête non répétitif à l'état passant, $I_{\mathrm{TSM}}$ ..... 64
5.4.4 Courant de crête de choc non répétitif, ..... 66
5.4.5 Tension de crête inverse répétitive, $V_{\text {RRM }}$ ..... 68
5.4.6 Courant de crête direct non répétitif, $I_{\text {FSM }}$ ..... 68
5.4.7 Courant de crête direct répétitif, $\Lambda_{\text {FRM ... }}$ ..... 70
5.4.8 Taux de montée critique du courant a l'état passant, di/dt ..... 70
5.5 Procédures d'essais des caractéristiques ..... 72
5.5.1 Courant à l'état bloqué, $x_{0}$ ..... 72
5.5.2 Courant de crête à I'état bloqué répétitif, IDRM ..... 74
5.5.3 Courant de crête inverse répétitif, RRM ..... 74
5.5.4 Tension $V_{(B D)}$ ) et courant ( $I_{(\mathrm{BO})}$ ) de retournement ..... 74
5.5.5 Tensop à l"état passant, VT ..... 78
5.5.6 Gourant de maintien, A ..... 86
5.5.7 Capacité à l'état bloqué, Co. ..... 86
5.5.8 Tension de claquange, $V /(B R)$ ..... 90
5.5.9 Tension etcourant de commutation, $V_{S}$ et $I_{S}$ ..... 92
5.5.10 Tension directe, $V_{F}$ ..... 94
5.5.11 Tension de crête directe de recouvrement, $V_{\text {FRM }}$ ..... 94
5.5.12 Jaux de croissance critique de la tension à l'état bloqué, $\mathrm{d} v / \mathrm{d} t$ ..... 96
5.5 13 Coefficient de température de la tension de claquage, $\alpha_{V(\mathrm{BR})}$ ..... 96
5.5.14 Variation du courant de maintien avec la température ..... 98
5.5.15 Déclassement en température. ..... 98
5.5.16 Résistance thermique $R_{\text {th }}$ ..... 98
5.5.17 Impédance thermique transitoire, $Z_{\mathrm{th}(t)}$ ..... 100
5.5.18 Tension et courant de crête gâchette-borne adjacente à l'état bloqué, $V_{\text {GDM }}, I_{\text {GDM }}$ ..... 104
5.5.19 Courant inverse de gâchette, borne adjacente ouverte, $I_{\mathrm{GAO}}, I_{\mathrm{GKO}}$ ..... 104
5.5.20 Courant inverse de gâchette, bornes maîtresses en court-circuit, $I_{\mathrm{GAS}}$, IGKS ..... 106
5.5.21 Courant inverse de gâchette, à l'état passant, I IGAT, I $I_{\mathrm{GKT}}$ ..... 106
5.5.22 Courant inverse de gâchette, à l'état passant direct, $I_{\mathrm{GAF}}, I_{\mathrm{GKF}}$ ..... 108
5.5.23 Charge de commutation de la gâchette $Q_{G S}$ ..... 110
5.5.24 Courant de commutation de crête de gâchette $I_{\mathrm{GSM}}$ ..... 114
5.5.25 Tension de retournement gâchette-borne adjacente $V_{\mathrm{GK}(\mathrm{BO})}, V_{\mathrm{GA}(\mathrm{BO})}$ ..... 116
5.3 Failures and fault modes ..... 57
5.3.1 Degradation failure ..... 57
5.3.2 High off-state current fault mode ..... 59
5.3.3 High reverse current fault mode ..... 59
5.3.4 High breakover voltage fault mode ..... 59
5.3.5 Low holding current fault mode ..... 59
5.3.6 Catastrophic (cataleptic) failure ..... 59
5.3.7 Short-circuit fault mode. ..... 59
5.3.8 Open-circuit fault mode ..... 59
5.3.9 Critical failure ..... 59
5.3.10 Fail-safe ..... 61
5.4 Rating test procedures ..... 61
5.4.1 Repetitive peak off-state voltage $-V_{\text {DRM }}$ ..... 61
5.4.2 Repetitive peak on-state current - $I_{\text {TRM }}$ ..... 63
5.4.3 Non-repetitive peak on-state current $-I_{\text {TSM }}$. ..... 65
5.4.4 Non-repetitive peak pulse current, $I_{P}$ ..... 67
5.4.5 Repetitive peak reverse voltage, $V_{\text {RRM }}$. ..... 69
5.4.6 Non-repetitive peak forward current, I ISAM ..... 69
5.4.7 Repetitive peak forward current FRM. . ... ..... 71
5.4.8 Critical rate of rise of on-state cqurrent, di/dt. ..... 71
5.5 Characteristic test procedures ..... 73
5.5.1 Off-state current, I $I_{D}$ ..... 73
5.5.2 Repetitive peak off-sfate current DRM ..... 75
5.5.3 Repetitiverpeak reverse current, IRRM ..... 75
5.5.4 Breakover voltage - $V_{(B Q)}$ and current, $I_{(B O)}$ ..... 75
5.5.5 On-sfate votage, $\nabla_{\uparrow}$ ..... 79
5.5.6 Holding current, $/ \mathrm{H}$. ..... 87
5.5.7 Off-state capacitance, Co ..... 87
5.5.8 Breakdown voltage, $\mathrm{K}_{(\mathrm{BR})}$ ..... 91
5.5.9 Switching voltage, $V_{S}$ and current, $I_{S}$ ..... 93
5.5. $1 Q$ Forward voltage, $V_{F}$ ..... 95
5.5.11 Peak forwand recovery voltage, $V_{\text {FRM }}$ ..... 95
5.5.12 Exitical rate of rise of off-state voltage, $\mathrm{d} v / \mathrm{d} t$ ..... 97
5.513 Temperature coefficient of breakdown voltage, $V_{(B R)}$ ..... 97
5.5.14 Variation of holding current with temperature ..... 99
5.5.15 Temperature derating ..... 99
5.5.16 Thermal resistance, $\mathrm{R}_{\text {th }}$ ..... 99
5.5.17 Transient thermal impedance, $Z_{\text {th( } \mathrm{t})}$ ..... 101
5.5.18 Gate-to-adjacent terminal peak off-state voltage and peak off-state gate current, $V_{\mathrm{GDM}}, I_{\mathrm{GDM}}$ ..... 105
5.5.19 Gate reverse current, adjacent terminal open, $I_{\mathrm{GAO}}, I_{\mathrm{GKO}}$ ..... 105
5.5.20 Gate reverse current, main terminals short-circuited, $I_{\text {GAS }}, I_{\text {GKS }}$ ..... 107
5.5.21 Gate reverse current, on-state, $I_{\mathrm{GAT}}, I_{\mathrm{GKT}}$ ..... 107
5.5.22 Gate reverse current, forward conducting state, $I_{\mathrm{GAF}}, I_{\mathrm{GKF}}$ ..... 109
5.5.23 Gate switching charge, $Q_{G S}$ ..... 111
5.5.24 Peak gate switching current, $I_{G S M}$ ..... 115
5.5.25 Gate-to-adjacent terminal breakover voltage, $V_{G K(B O)}, V_{G A(B O)}$ ..... 117
Annexe A (normative) Conditions anormales de fonctionnement ..... 118
A. 1 Conditions d'environnement ..... 118
A. 2 Conditions mécaniques ..... 118
A. 3 Facteurs variés ..... 120
Annexe B (informative) Normes de vérification américaines avec formes d'ondes de choc de référence ..... 122
B. 1 Matériel de vérification du Bureau Central ..... 122
B. 2 Matériel de vérification chez le client ..... 122
B. 3 Formes d'ondes d'essai ..... 122
Annex A (normative) Abnormal service conditions. ..... 119
A. 1 Environmental conditions ..... 119
A. 2 Mechanical conditions ..... 119
A. 3 Miscellaneous factors ..... 121
Annex B (informative) US verification standards with referenced impulse waveforms ..... 123
B. 1 Central office equipment verification ..... 123
B. 2 Customer premise equipment verification ..... 123
B. 3 Test waveforms ..... 123

# COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE 

# COMPOSANTS POUR PARAFOUDRES BASSE TENSION - 

# Partie 341: Spécifications pour les parafoudres à thyristor 

AVANT-PROPOS

1) La CEI (Commission Électrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans lés domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Nømmes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité nationa intékessé par le sujet traité peut participer. Les organisations internationales, gouvernementales ei non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitemert avec lepganisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entreles deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions lechiqueqs représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Gomités nationaux intéressés sont représentés dans chaque comité d'études.
3) Les documents produits se présentent sous la forme de pecommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports techniques o guides et agréés Comme tels par les Comités nationaux.
4) Dans le but d'encourager l'unification internationale, eo Conités nationaux de/a CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, Ves Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre $\operatorname{la}$ norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes stairs dans cette dernière.
5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est dédlaré conforme all'ung de ses normes.
6) L'attention est attirée sur le fait que certains des éréments de la présente Norme internationale peuvent faire l'objet de droits de prppriété intellectuelle pu de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avdir identifié detels droits dépropriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI $81643-341$ a été établie par le sous-comité 37B: Composants spécifiques aux parafoudres et aux dispositifs de protection contre les surtensions, du comité d'études 37 de la CEL: Parafoudres

Le texte de cette norme est issu des documents suivants:


Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 3.
L'annexe A fait partie intégrante de cette norme.
L'annexe $B$ est donnée uniquement à titre d'information.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant 2005. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.


## INTERNATIONAL ELECTROTECHNICAL COMMISSION

## COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES Part 341: Specification for thyristor surge suppressors (TSS)

## FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standawds. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organjzations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions derermined by agreement Detween the two organizations.
2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
3) The documents produced have the form of recommendations for jnternational ase and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
4) In order to promote international unification, 位C National Committees updertake to apply IEC International Standards transparently to the maximum extent possible in their natjonal and regional standards. Any divergence between the IEC Standard and the conresponding national or regional standard shall be clearly indicated in the latter.
5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in ØOfformity with one of its standards.
6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEO shall not be held responsible for identifying any or all such patent rights.

International Stapdard IEC 61643-341 has been prepared by subcommittee 37B, Specific components for surge arresters and surge protective devices, of IEC technical committee 37: Surge arresters.

The text of this standardis based on the following documents:


Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

Annex A forms an integral part of this standard.

Annex B is for information only.
The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.


# COMPOSANTS POUR PARAFOUDRES BASSE TENSION - 

## Partie 341: Spécifications pour les parafoudres à thyristor

## 1 Domaine d'application

La présente partie de la CEI 61643 est une norme de spécification d'essai pour les composants de parafoudres à thyristor (TSS) destinés à limiter les surtensions et à écouler les courants de foudre par des actions de dérivation. Ces composants peuvent être utilisés dans la construction de dispositifs de protection contre la foudre, particulièremept dans le domaine des télécommunications.

La présente norme contient des indications sur

- les termes, symboles littéraires et définitions,
- les fonctions fondamentales, les configurations et la structure des composants,
- les conditions de fonctionnement et les modes de/défaillance,
- la vérification et la mesure des caractéristiques.


## 2 Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente partie de la CEI 61643. Pour les références datées, les amendementsultérieups ou les révisions de ces publications ne s'appliquent pas. Toutefois, Yes parties prenantes aux accords fondés sur la présente partie de la CEI 61643 sont invitées à rechercher la possibitité d'appliquer les éditions les plus récentes des documents ngrmatifs indiqués ci-après. Pqur les références non datées, la dernière édition du document normatif en référence s'applique. Les membres de la CEI et de I'ISO possèdent le registre des Normes internationales en yigueur.

CEI 60050(191), Vocabulaire Electrotechnique International (VEI) - Chapitre 191: Sûreté de fonctionnement et qualité de senvice

CEI 60050(702) Scabulakire Electrotechnique International (VEI) - Chapitre 702: Oscillations, signaux et dispositifs associés

CEI 60099-4, Parafoudres - Partie 4: Parafoudres à oxyde métallique sans éclateur pour réseaux à courant alternatif

CEI 60721-3-3, Classification des conditions d'environnement - Partie 3: Classification des groupements des agents d'environnement et de leurs sévérités - Section 3: Utilisation à poste fixe, protégé contre les intempéries

CEI 60721-3-9, Classification des conditions d'environnement - Partie 3: Classification des groupes des paramètres d'environnement et leurs sévérités - Section 9: Microclimats à l'intérieur des produits

CEI 60747-1:1983, Dispositifs à semiconducteurs - Dispositifs discrets - Première partie: Généralités

CEI 60747-2:1983, Dispositifs à semiconducteurs - Dispositifs discrets et circuits intégrés Partie 2: Diodes de redressement

# COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES - <br> Part 341: Specification for thyristor surge suppressors (TSS) 

## 1 Scope

This part of IEC 61643 is a test specification standard for thyristor surge suppressor (TSS) components designed to limit overvoltages and divert surge currents by clipping and crowbarring actions. Such components are used in the construction of surge protective devices, particularly as they apply to telecommunications.

This standard contains information on

- terms, letter symbols, and definitions
- basic functions, configurations and component structure
- service conditions and fault modes
- rating verification and characteristic measurement


## 2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 61643. For dated references, subsequent amendments to, or revisions of any of these publicakions do not apply. However, parties to agreements based on this paxt of IEC 61643 are encouraged to investigate the possibility of applying the most recent editions of the normativedocuments indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid international Standards.

IEC 60050(191), International Exectrotecßnical Vocabulary - Chapter 191: Dependability and quality of service

IEC 60050(702), inteknationaß Electrotechnical Vocabulary - Chapter 702: Oscillations, signals and related devides

IEC 60099-4 Sdrge arrestors - Part 4: Metal-oxide surge arrestors without gaps for a.c. systems

IEC 60721-3-3, Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 3: Stationary use at weatherprotected locations

IEC 60721-3-9, Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 9: Microclimates inside products

IEC 60747-1:1983, Semiconductor devices - Discrete devices and integrated circuits - Part 1: General

IEC 60747-2: 1983, Semiconductor devices Discrete devices and integrated circuits - Part 2: Rectifier diodes

CEI 60747-6:1983, Dispositifs à semiconducteurs - Dispositifs discrets et circuits intégrés Sixième partie: Thyristors

NOTE Le parafoudre à thyristor présente des caractéristiques et des utilisations assez différentes de celles des thyristors traités dans la CEI 60747-6. Ces différences nécessitent la modification de la description de quelques caractéristiques et l'introduction de nouveaux termes. Ces changements sont indiqués dans l'article 3.

CEI 60749:1996, Dispositifs à semiconducteurs - Essais mécaniques et climatiques
CEI 61000-4-5:1995, Compatibilité électromagnétique (CEM) - Partie 4: Techniques d'essai et de mesures - Section 5: Essai d'immunité aux ondes de choc

CEI 61083-1:1991, Enregistreurs numériques pour les mesures pendant lese essais de choc à haute tension - Partie 1: Prescriptions pour les enregistreurs numériques,

ITU-T Recommandation K.20:1996, Immunité des équipements de comnzutation
des télécommunications aux surtensions et aux surintensités

ITU-T Recommandation K.21:1996, Immunité des terminaǔ d’abpnnés aux surtensions et aux surintensités

ITU-T Recommandation K.28:1993, Caractéristiques des modutes de parasurtension à semiconducteurs destinés à assurer la protection des installations de télécommunication


IEC 60747-6:1983, Semiconductor devices - Discrete devices and integrated circuits - Part 6: Thyristors

NOTE The TSS has substantially different characteristics and usage to the type of thyristor covered by IEC 60747-6. These differences necessitate the modification of some characteristic descriptions and the introduction of new terms. Such changes and additions are indicated in clause 3.

IEC 60749:1996, Semiconductor devices - Mechanical and climatic test methods
IEC 61000-4-5:1995, Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test

IEC 61083-1:1991 Digital recorders for measurements in high-voltage imputse tests - Part 1: Requirements for digital recorders

ITU-T Recommendation K.20:1996 Resistibility of telecommunication svisitching equipment to overvoltages and overcurrents

ITU-T Recommendation K.21:1996 Resistibility of subscribers' terminat to overvoltages and overcurrents

ITU-T Recommendation K.28:1993 Characteristics of semi-conductor arrester assemblies for the protection of telecommunications installations


