Communication networks and systems in substations –

Part 1: Introduction and overview

Réseaux et systèmes de communication dans les postes –

Partie 1: Introduction et vue d’ensemble
CONTENTS

FOREWORD ... 4

1 Scope ... 6

2 Reference documents .. 6

3 Terms, definitions and abbreviations .. 7
 3.1 Terms and definitions .. 7
 3.2 Abbreviated terms .. 9

4 Objectives ... 9

5 History ... 11

6 Approach to the elaboration of an applicable standard 12
 6.1 General .. 12
 6.2 Functions and logical nodes ... 12
 6.3 Substation topologies .. 16
 6.4 Dynamic scenarios ... 17
 6.5 Requirements for a physical communication system 17

7 How to cope with fast innovation of communication technology 18
 7.1 Independence of communication from application 18
 7.2 Data modelling and services ... 19

8 General system aspects .. 20
 8.1 Motivation ... 20
 8.2 Engineering-tools and parameters ... 20
 8.3 Substation automation system configuration language 21
 8.4 Quality and life-cycle management ... 22
 8.5 General requirements .. 22

9 Conformance testing ... 23

10 Structure and contents of the standard series .. 23

Annex A (informative) Types of substations and communication bus structures ... 26
Annex B (informative) Documents which have been considered in the IEC 61850 series ... 36

Figure 1 – Logical interfaces of an SAS ... 11
Figure 2 – Interface model of a substation automation system 13
Figure 3 – Relationship between functions, logical nodes, and physical nodes (examples) ... 14
Figure 4 – Types of MV and HV substations ... 14
Figure 5 – Mapping of logical interfaces to physical interfaces; mapping of logical interface 8 to the station bus .. 17
Figure 6 – Mapping of logical interfaces to physical interfaces; mapping of logical interface 8 to the process bus .. 18
Figure 7 – Basic reference model ... 19
Figure 8 – The modelling approach of the IEC 61850 series 20
Figure 9 – Exchange of system parameters .. 21
Figure 10 – Periods for delivery obligations (example) 22
Figure A.1 – Examples of typical single line diagram for type D1 27
Figure A.2 – Examples of typical single line diagrams for type D2..27
Figure A.3 – Example of typical single line diagram for type D3...28
Figure A.4 – Examples of typical single line diagrams for type T1..28
Figure A.5 – Example of typical single line diagram for type T2...29
Figure A.6 – Possible locations of current and voltage transformers in substation D2-2......32
Figure A.7 – Assignment of bay units (example)...32
Figure A.8 – Typical protection zones..33
Figure A.9 – Alternative solutions for the process level communication bus.....................34

Table 1 – Types of messages..15
Table 2 – Calculated information flow at logical interfaces (example).................................17
Table A.1 – Types of substations and interfaces used...30
Table A.2 – Types of substations and functions used..31
INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS IN SUBSTATIONS –

Part 1: Introduction and overview

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example “state of the art”.

IEC 61850-1, which is a technical report, has been prepared by IEC technical committee 57: Power system control and associated communications

The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/524/CDV</td>
<td>57/561/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
IEC 61850 consists of the following parts, under the general title *Communication networks and systems in substations*.

Part 1: Introduction and overview
Part 2: Glossary
Part 3: General requirements
Part 4: System and project management
Part 5: Communication requirements for functions and device models
Part 6: Configuration description language for communication in electrical substations related to IEDs
Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models
Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)
Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes
Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes
Part 8-1: Specific communication service mapping (SCSM) – Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3
Part 9-1: Specific communication service mapping (SCSM) – Sampled values over serial unidirectional multidrop point to point link
Part 9-2: Specific communication service mapping (SCSM) – Sampled values over ISO/IEC 8802-3
Part 10: Conformance testing

This part is an introduction and overview of the IEC 61850 standard series. It describes the philosophy, the work approach, the contents of the other parts, and documents of other bodies which have been reviewed.

The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

1 For more details, see Clause 10.
2 Under consideration.
3 To be published.
COMMUNICATION NETWORKS AND SYSTEMS
IN SUBSTATIONS –

Part 1: Introduction and overview

1 Scope

This technical report is applicable to substation automation systems (SAS). It defines the communication between intelligent electronic devices (IEDs) in the substation and the related system requirements.

This part gives an introduction and overview of the IEC 61850 standard series. It refers to and includes text and Figures from other parts of the IEC 61850 standard series.

2 Reference documents

IEC 60870-5-103:1997, Telecontrol equipment and systems – Part 5-103: Transmission protocols – Companion standard for the informative interface of protection equipment

IEC 61850-3: Communication networks and systems in substations – Part 3: General requirements

IEC 61850-5: Communication networks and systems in substations – Part 5: Communication requirements for functions and device models

IEC 61850-7-1: Communication networks and systems in substations – Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models

IEC 61850-7-2: Communication networks and systems in substations – Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)

IEC 61850-7-3: Communication networks and systems in substations – Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes

IEC 61850-7-4: Communication networks and systems in substations – Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes

IEEE 100, 1996, IEEE Standard Dictionary of Electrical and Electronic Terms