CONTENTS

FOREWORD ... 5

INTRODUCTION .. 7

1 Scope .. 8
2 Normative references ... 8
3 Terms and definitions .. 9
4 Sources of electrical power .. 14
 4.1 General .. 14
 4.2 Main source of electrical power .. 15
 4.3 Emergency source of electrical power ... 15
 4.4 Additional requirements for periodically unattended machinery spaces 17
 4.5 General requirements for renewable sources of electrical power 17
 4.6 Arrangement and location ... 18
 4.7 Output ... 19
 4.8 Additional requirements for electrical emergency power systems 20
 4.9 Starting arrangements for emergency generators ... 20
5 System earthing .. 21
 5.1 General .. 21
 5.2 General requirements ... 21
 5.3 Neutral earthing methods ... 21
 5.4 Neutral earthing for systems up to and including 1 000 V ... 21
 5.5 Neutral earthing for systems above 1 000 V ... 22
 5.6 Generators operated in parallel with source transformers ... 22
 5.7 Earthing resistors, connection to hull/structure ... 23
6 Distribution systems .. 24
 6.1 DC distribution systems ... 24
 6.2 AC distribution systems .. 29
7 Distribution system requirements .. 33
 7.1 Earthed distribution systems .. 33
 7.2 Methods of distribution .. 34
 7.3 Balance of loads ... 34
 7.4 Final circuits .. 34
 7.5 Control circuits ... 35
 7.6 Socket-outlets ... 35
 7.7 Shore connections for mobile units ... 36
 7.8 Motor circuits ... 36
8 Diversity (demand) factors .. 37
 8.1 Final circuits .. 37
 8.2 Circuits other than final circuits .. 37
 8.3 Application of diversity (demand) factors ... 37
 8.4 Motive-power circuits - General .. 37
9 System study and calculations .. 38
 9.1 General .. 38
 9.2 Electrical load study ... 38
 9.3 Load flow calculations .. 39
9.4 Short-circuit calculations ... 39
9.5 Protection and discrimination study ... 41
9.6 Power system dynamic calculations ... 41
9.7 Calculation of harmonic currents and voltages 43
10 Protection .. 43
 10.1 General ... 43
 10.2 Characteristic and choice of protective devices with reference to short-circuit rating ... 44
 10.3 Choice of protective devices with reference to overload 45
 10.4 Choice of protective devices with regard to their application 45
 10.5 Undervoltage protection ... 48
 10.6 Overvoltage protection ... 49
11 Lighting ... 49
 11.1 General ... 49
 11.2 General lighting system ... 50
 11.3 Emergency lighting system ... 51
 11.4 Escape lighting system ... 51
 11.5 Lighting circuits in machinery spaces, accommodation spaces, open deck spaces, etc ... 52
 11.6 Luminaires ... 53
 11.6.1 Discharge lamp luminaires of voltages above 250 V 53
 11.6.2 Searchlights .. 53
12 Control and instrumentation .. 53
 12.1 Safeguarding .. 53
 12.2 Supply arrangement .. 53
 12.3 Dependability ... 53
 12.4 Safety ... 53
 12.5 Segregation .. 53
 12.6 Performance .. 54
 12.7 Integration .. 54
 12.8 Development activities .. 54
 12.9 Electromagnetic compatibility ... 54
 12.10 Design .. 54
 12.11 Installation and ergonomics .. 55
 12.12 Specific installations ... 56
 12.13 Automatic control installations for electrical power supply 58
 12.14 Machinery control installations .. 60
 12.15 Public address and general alarm systems 60
 12.16 Computer based systems .. 61
 12.17 Software .. 63
 12.18 Tests .. 65
 12.19 Documentation ... 66
13 Degrees of protection by enclosures .. 67
 13.1 General .. 67

Bibliography .. 69
Figure 1 – Continuity of supply/continuity of service...14
Figure 2 – TN-S d.c. system..25
Figure 3 – TN-C d.c. system..26
Figure 4 – TN-C-S d.c. system ..27
Figure 5 – IT d.c. system ...28
Figure 6 – TN-S a.c. system..30
Figure 7 – TN-C-S a.c. system ..30
Figure 8 – TN-C a.c. system..31
Figure 9 – IT a.c. system...31

Table 1 – Summary of principal features of the neutral earthing methods23
Table 2 – Voltages for d.c. systems...29
Table 3 – AC systems having a nominal voltage between 100 V and 1000 V inclusive and related equipment ..32
Table 4 – AC three-phase systems having a nominal voltage above 1 kV and not exceeding 35 kV and related equipment* ...33
Table 5 – General lighting illumination levels..50
Table 6 – Escape Lighting illumination levels...52
Table 7 – Minimum requirements for the degree of protection for mobile and fixed offshore units..67
INTERNATIONAL ELECTROTECHNICAL COMMISSION

MOBILE AND FIXED OFFSHORE UNITS –
ELECTRICAL INSTALLATIONS –

Part 2: System design

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61892-2 has been prepared by IEC technical committee 18: Electrical installations of ships and of mobile and fixed offshore units.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/965/FDIS</td>
<td>18/995/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
IEC 61892 consists of the following parts, under the general title: Mobile and fixed offshore units – Electrical installations:

Part 1: General requirements and conditions
Part 2: System design
Part 3: Equipment
Part 4: Cables \(^1\)
Part 5: Mobile units
Part 6: Installation
Part 7: Hazardous areas

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

\(^1\) Under consideration. Before IEC 61892-4 is published, reference is made to the IEC 60092-35X series.
IEC 61892 forms a series of International Standards intended to enable safety in the design, selection, installation, maintenance and use of electrical equipment for the generation, storage, distribution and utilisation of electrical energy for all purposes in offshore units, which are being used for the purpose of exploration or exploitation of petroleum resources.

This part of IEC 61892 also incorporates and co-ordinates, as far as possible, existing rules and forms a code of interpretation, where applicable, of the requirements of the International Maritime Organisation, a guide for future regulations which may be prepared and a statement of practice for offshore unit owners, constructors and appropriate organisations.

This standard is based on equipment and practices, which are in current use, but it is not intended in any way to impede development of new or improved techniques.

The ultimate aim has been to produce a set of International standards exclusively for the offshore petroleum industry.
MOBILE AND FIXED OFFSHORE UNITS –
ELECTRICAL INSTALLATIONS –

Part 2: System design

1 Scope

This part of IEC 61892 contains provisions for system design of electrical installations in mobile and fixed units used in the offshore petroleum industry for drilling, production, processing and for storage purposes, including pipeline, pumping or ‘pigging’ stations, compressor stations and exposed location single buoy moorings.

It applies to all installations, whether permanent, temporary, transportable or hand-held, to a.c. installations up to and including 35 000 V and d.c. installations up to and including 750 V. (a.c. and d.c. voltages are nominal values)

This standard does not apply either to fixed equipment used for medical purposes or to the electrical installations of tankers.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60038:2002, IEC standard voltages
IEC 60092-504:2001, Electrical installations in ships – Part 504: Special features – Control and instrumentation
IEC 60447, Basic and safety principles for man-machine interface, marking and identification – Actuating principles
IEC 60533, Electrical and electronic installations in ships – Electromagnetic compatibility
IEC 60617-DB:20012) Graphical symbols for diagrams – Architectural and topographical installation plans and diagrams
IEC 60947-2:2003, Low voltage switchgear and controlgear – Part 2: Circuit-breakers
IEC 61000-2-4, Electromagnetic compatibility (EMC) – Part 2-4: Environment – Compatibility levels in industrial plants for low-frequency conducted disturbances
IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems

2) “DB” refers to the on-line IEC database.
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE The definitions included in this part are those having general application in the IEC 61892 series. Definitions applying to particular apparatus or equipment are included in the other parts of IEC 61892.

3.1 a.c. systems of distribution

3.1.1 single-phase two-wire a.c. system

system comprising two conductors only, between which the load is connected

NOTE In some countries this is designated as a two-phase system

3.1.2 three-phase three-wire a.c. system

system comprising three conductors connected to a three-phase supply

3.1.3 three-phase four-wire a.c. system

system comprising four conductors of which three are connected to a three-phase supply and the fourth to a neutral point in the source of supply

3.2 appropriate authority

governmental body with whose rules a unit is required to comply

3.3 availability

the state of an item of being able to perform its required function

[IEV 603-05-04] This is a preview - click here to buy the full publication