CONTENTS

FOREWORD ... 4
INTRODUCTION .. 6

1 Scope .. 7
2 Normative references ... 7
3 Terms and definitions ... 7
4 CIM specification .. 8
 4.1 CIM modeling notation ... 8
 4.2 CIM packages ... 8
 4.2.1 Core .. 10
 4.2.2 Topology ... 10
 4.2.3 Wires ... 10
 4.2.4 Outage .. 10
 4.2.5 Protection .. 10
 4.2.6 Meas ... 10
 4.2.7 LoadModel... 10
 4.2.8 Generation ..10
 4.2.9 Domain .. 11
 4.3 CIM classes and relationships ... 11
 4.3.1 Generalization ... 12
 4.3.2 Simple association .. 12
 4.3.3 Aggregation ... 13
 4.4 CIM model concepts and examples ... 13
 4.4.1 Transformer model .. 13
 4.4.2 Connectivity model .. 14
 4.4.3 Inheritance Hierarchy .. 17
 4.4.4 Equipment Containers ... 19
 4.5 Modeling tools ... 19
 4.6 Modeling guidelines ... 20
 4.6.1 Amendments to the CIM .. 20
 4.6.2 CIM profiles... 21
 4.7 User implementation conventions .. 21
 4.7.1 Naming .. 21
 4.7.2 Use of Measurement-related classes ... 22
 4.7.3 Number of Terminals for ConductingEquipment Objects 25
 4.8 Examples .. 25

Annex A (normative) Common information model for control center application program interface .. 26
Annex B (informative) CIM notation mapping from entity relationship diagram to class diagram in UML ... 174

Bibliography ... 176
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ENERGY MANAGEMENT SYSTEM APPLICATION PROGRAM INTERFACE (EMS-API) –

Part 301: Common Information Model (CIM) Base

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be held responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning a computer-based implementation of an object-oriented power system model in a relational database. As such, it does not conflict with the development of any logical power system model including the Common Information Model (CIM), where implementation of the model is not defined.

The IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right, ICL, has assured the IEC that they are willing to grant a royalty free license to any entity implementing this standard. This license is issued by default, and vendors wishing to take up the license are not required to notify ICL. The statement of the holder of this patent right is registered with IEC. Information may be obtained from:

ICL
Wenlock Way
West Gorton
Manchester
M12 5DR
United Kingdom (U.K.)

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 61970-301 has been prepared by IEC technical committee 57: Power system control and associated communications.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/656/FDIS</td>
<td>57/682/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until 2006. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

A bilingual version of this standard may be issued at a later date.
INTRODUCTION

This standard is part of the IEC 61970 series, which defines an Application Program Interface (API) for an Energy Management System (EMS). This standard is based upon the work of the EPRI Control Center API (CCAPI) research project (RP-3654-1). The principle objectives of the EPRI CCAPI project are to:

- reduce the cost and time needed to add new applications to an EMS;
- protect the investment of existing applications or systems that are working effectively with an EMS.

The principal task of the CCAPI project is to produce requirements and draft text for standards to facilitate the integration of EMS applications developed independently by different vendors, between entire EMS systems developed independently, or between an EMS system and other systems concerned with different aspects of power system operations, such as generation or Distribution Management Systems (DMS). This is accomplished by defining application program interfaces to enable these applications or systems access to public data and exchange information independent of how such information is represented internally. The Common Information Model (CIM) specifies the semantics for this API. The Component Interface Specifications (CIS) specify the content of the messages exchanged.

This part of the series, IEC 61970-301, defines the CIM Base set of packages which provide a logical view of the physical aspects of Energy Management System information. Future IEC 61970-302 defines the financial and energy scheduling logical view. Future IEC 61970-303 defines the SCADA logical view. The CIM is an abstract model that represents all the major objects in an electric utility enterprise typically needed to model the operational aspects of a utility. This model includes public classes and attributes for these objects, as well as the relationships between them.

The objects represented in the CIM are abstract in nature and may be used in a wide variety of applications. The use of the CIM goes far beyond its application in an EMS. This standard should be understood as a tool to enable integration in any domain where a common power system model is needed to facilitate interoperability and plug compatibility between applications and systems independent of any particular implementation.
1 Scope

The Common Information Model (CIM) is an abstract model that represents all the major objects in an electric utility enterprise typically involved in utility operations. By providing a standard way of representing power system resources as object classes and attributes, along with their relationships, the CIM facilitates the integration of Energy Management System (EMS) applications developed independently by different vendors, between entire EMS systems developed independently, or between an EMS system and other systems concerned with different aspects of power system operations, such as generation or distribution management. This is accomplished by defining a common language (i.e., semantics and syntax) based on the CIM to enable these applications or systems to access public data and exchange information independently of how such information is represented internally.

The object classes represented in the CIM are abstract in nature and may be used in a wide variety of applications. The use of the CIM goes far beyond its application in an EMS. This standard should be understood as a tool to enable integration in any domain where a common power system model is needed to facilitate interoperability and plug compatibility between applications and systems independent of any particular implementation.

Due to the size of the complete CIM, the object classes contained in the CIM are grouped into a number of logical Packages, each of which represents a certain part of the overall power system being modeled. Collections of these Packages are progressed as separate International Standards. This part of IEC 61970 specifies a base set of packages which provide a logical view of the physical aspects of Energy Management System (EMS) information within the electric utility enterprise that is shared between all applications. Other standards specify more specific parts of the model that are needed by only certain applications. Subclause 4.2 below provides the current grouping of packages into standards documents.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61850 (all parts), Communication networks and systems in substations

ISO 8601, Data elements and interchange formats - Information interchange - Representation of dates and times