INTERNATIONAL STANDARD

Specification of the radio data system (RDS) for VHF/FM sound broadcasting in the frequency range from 87.5 MHz to 108.0 MHz

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.160.40

ISBN 978-2-8322-2544-8

Warning! Make sure that you obtained this publication from an authorized distributor.
CONTENTS

FOREWORD .. 9

INTRODUCTION .. 11

1 Scope .. 12

2 Normative references ... 12

3 Abbreviations ... 12

4 Modulation characteristics of the data channel (physical layer) 13

 4.1 General .. 13

 4.2 Subcarrier frequency .. 14

 4.3 Subcarrier phase .. 15

 4.4 Subcarrier level ... 15

 4.5 Method of modulation .. 15

 4.6 Clock-frequency and data-rate ... 15

 4.7 Differential coding ... 16

 4.8 Data-channel spectrum shaping .. 16

5 Baseband coding (data-link layer) ... 19

 5.1 Baseband coding structure .. 19

 5.2 Order of bit transmission ... 20

 5.3 Error protection .. 21

 5.4 Synchronisation of blocks and groups .. 21

6 Message format (session and presentation layers) ... 22

 6.1 Addressing .. 22

 6.1.1 Design principles ... 22

 6.1.2 Principal features .. 22

 6.1.3 Group types ... 23

 6.1.4 Open data channel/Applications Identification .. 25

 6.1.5 Coding of the group types ... 27

 6.2 Coding of information .. 44

 6.2.1 General .. 44

 6.2.2 Coding of information for control .. 44

 6.2.3 Coding and use of information for display .. 54

 6.2.4 Coding of clock time and date (CT) .. 54

 6.2.5 Coding of information for Transparent Data Channels (TDC) 55

 6.2.6 Coding of information for in house applications (IH) 55

 6.2.7 Coding of Radio Paging (RP) ... 55

 6.2.8 Coding of Emergency Warning Systems (EWS) .. 56

7 Description of features .. 57

 7.1 Alternative frequencies list (AF) ... 57

 7.2 Clock Time and date (CT) ... 57

 7.3 Decoder Identification (DI) and dynamic PTY Indicator (PTYI) 57

 7.4 Extended Country Code (ECC) .. 57

 7.5 Enhanced Other Networks information (EON) ... 57

 7.6 Emergency Warning System (EWS) ... 57

 7.7 In House application (IH) .. 57

 7.8 Music Speech switch (MS) ... 58

 7.9 Open Data Applications (ODA) .. 58

 7.10 Programme Identification (PI) .. 58
7.11 Programme Item Number (PIN) ... 59
7.12 Programme Service name (PS) ... 59
7.13 Programme Type (PTY) ... 59
7.14 Programme Type Name (PTYN) ... 59
7.15 Radio Paging (RP) ... 59
7.16 RadioText (RT) .. 59
7.17 Enhanced RadioText (eRT) ... 59
7.18 RadioText Plus (RT+) ... 60
7.19 Traffic Announcement identification (TA) ... 60
7.20 Transparent Data Channels (TDC) .. 60
7.21 Traffic Message Channel (TMC) ... 60
7.22 Traffic Programme identification (TP) ... 60
8 Marking.. 60
Annex A (normative) Offset words to be used for group and block synchronisation 62
Annex B (informative) Theory and implementation of the modified shortened cyclic code ... 63
B.1 General... 63
B.2 Encoding procedure ... 63
B.2.1 Theory ... 63
B.2.2 Shift-register implementation of the encoder ... 65
B.3 Decoding procedure .. 65
B.3.1 Theory ... 65
B.3.2 Implementation of the decoder ... 67
Annex C (informative) Implementation of group and block synchronisation using the modified shortened cyclic code ... 69
C.1 Theory .. 69
C.1.1 Acquisition of group and block synchronisation 69
C.1.2 Detection of loss of synchronisation .. 69
C.2 Shift register arrangement for deriving group and block synchronisation information ... 69
Annex D (normative) Programme identification codes and extended country codes 72
D.1 General... 72
D.2 PI structure .. 72
D.3 Extended country codes ... 72
D.4 Country codes: ‘Nibble 1’ ... 73
D.5 Programme in terms of area coverage (codes for fixed location transmitters only): ‘Nibble 2’ ... 76
D.6 Programme reference number: ‘Nibbles 3 and 4’ 76
D.7 PI codes for low-power short range transmitting devices 77
Annex E (normative) Basic and extended RDS character sets 78
Annex F (normative) Programme type codes .. 98
Annex G (informative) Conversion between time and date conventions 101
Annex H (informative) ARI (Autofahrer-Rundfunk-Information) system – Discontinuation ... 103
Annex J (normative) Language identification ... 104
Annex K (informative) RDS logo .. 106
Annex L (informative) Open data registration .. 107
Annex M (normative) Coding of Radio Paging (RP) 110
Figure 41 – Structure of Block 3 of Type 1A groups .. 52
Figure 42 – Structure of variant 12 of block 3 of type 14A groups (linkage information)
– National link .. 53
Figure 43 – Structure of variant 12 of block 3 of type 14A groups (linkage information)
– International link ... 53
Figure 44 – Structure of Variant 7 of Block 3 of type 1A groups for Identification of a
programme carrying EWS information ... 56
Figure B.1 – Generator matrix of the basic shortened cyclic code in binary notation 64
Figure B.2 – Shift-register implementation of the encoder ... 65
Figure B.3 – Parity-check matrix of the basic shortened cyclic code 66
Figure B.4 – Shift-register implementation of the decoder ... 67
Figure C.1 – Group and block synchronisation detection circuit .. 70
Figure D.1 – PI structure .. 72
Figure D.2 – Structure of Variant 0 of Block 3 of type 1A groups (ECC) 73
Figure D.3 – European Broadcasting Area – Correspondence between geographical
locations and the symbols used .. 74
Figure G.1 – Conversion routes between Modified Julian Date (MJD) and Coordinated
Universal Time (UTC) ... 101
Figure J.1 – Language identification code allocation .. 104
Figure M.1 – Group type 7A message format for radio paging ... 113
Figure M.2 – Group type 7A paging without an additional message .. 114
Figure M.3 – Group type 7A paging with an additional 10 digit message 115
Figure M.4 – Group type 7A paging with an additional 18 digit message 115
Figure M.5 – Group type 7A paging with an additional alphanumeric message 116
Figure M.6 – Group type 7A paging with an additional international 15 digit message 117
Figure M.7 – Functions message in international paging .. 118
Figure M.8 – Variant 0 of 1A group with PIN .. 120
Figure M.9 – Variant 2 of 1A group with PIN ... 121
Figure M.10 – Variants of 1A group without PIN ... 122
Figure M.11 – Group type 13A .. 128
Figure M.12 – Group type 7A paging with tone-only message ... 130
Figure M.13 – First 7A group of a variable-length message .. 131
Figure M.14 – Group type 7A national paging with additional alphanumeric message 132
Figure M.15 – Group type 7A national paging with additional variable-length numeric
message .. 134
Figure M.16 – Group type 7A national paging with additional variable-length functions
message ... 135
Figure M.17 – The two first 7A groups of an international alphanumeric message 136
Figure M.18 – The two first 7A groups of an international variable-length numeric
message ... 137
Figure M.19 – The two first 7A groups of an international variable-length functions
message ... 137
Figure M.20 – Traffic handling capacity, busy hour, call rate = 0,10 calls/pager/hour 140
Figure M.21 – Traffic handling capacity, busy hour, call rate = 0,067 calls/pager/hour 141
Figure M.22 – Traffic handling capacity, busy hour, call rate = 0,05 calls/pager/hour 141
Figure P.1 – RT+ information of the category ‘Item’ (see Table P.2) will be attached to the programme elements Item 1 and Item 2 ………………….. 153
Figure P.2 – RT+ information of the category ‘Item’ will be attached to the programme elements Item 1 and Item 2, but not to the programme element News ………………….. 153
Figure P.3 – RT+ information of the category ‘Item’ will be attached only to the programme element Item 1, but not to the programme element Talk ………………….. 153
Figure P.4 – Bit allocation for group 3A (message bits and AID) ………………….. 154
Figure P.5 – Coding of the message bits of the application group ………………….. 155
Figure Q.1 – Bit allocation for group 3A (message bits and AID) ………………….. 162
Figure Q.2 – Coding of the message bits of the application group ………………….. 163

Table 1 – Encoding rules ………………….. 16
Table 2 – Decoding rules ………………….. 16
Table 3 – Group types ………………….. 23
Table 4 – Main feature repetition rates ………………….. 24
Table 5 – Group repetition rates ………………….. 25
Table 6 – ODA group availability signalled in type 3A groups ………………….. 26
Table 7 – STY codes ………………….. 41
Table 8 – Codes for TP and TA ………………….. 45
Table 9 – Bit d0 to d3 meanings ………………….. 45
Table 10 – VHF code table ………………….. 46
Table 11 – Special meanings code table ………………….. 46
Table 12 – Code tables according to ITU regions; LF/MF code table – For ITU regions
1 and 3 (9 kHz spacing) ………………….. 46
Table 13 – Code tables according to ITU regions; MF code table – For ITU region 2
(10 kHz spacing) ………………….. 47
Table A.1 – Offset word codes ………………….. 62
Table B.1 – Offset word syndromes using matrix of Figure B.3 ………………….. 67
Table C.1 – Offset word syndromes for group and block synchronisation ………………….. 71
Table D.1 – PI code structure ………………….. 72
Table D.2 – European Broadcasting Area – Symbols used for ECC and PI country codes ………………….. 75
Table D.3 – Area coverage codes ………………….. 76
Table D.4 – Programme reference number codes ………………….. 76
Table D.5 – PI codes for short range transmitting devices ………………….. 77
Table E.1 – Basic RDS character set ………………….. 78
Table E.2 – Non-transmitted UCS-2 equivalents (1 of 7) ………………….. 79
Table E.3 – Extended RDS character set, for eRT only (1 of 13) ………………….. 85
Table F.1 – Programme type codes and corresponding terms for display ………………….. 98
Table G.1 – Symbols used ………………….. 101
Table J.1 – Language identification codes ………………….. 104
Table M.1 – Pager group codes ………………….. 111
Table M.2 – Codes for additional message content ………………….. 114
Table M.3 – Paging segment address codes for 10 and 18 digit messages ………………….. 115
Table M.4 – Paging segment address codes for alphanumeric messages ………………….. 116
Table M.5 – Paging segment address codes for international 15 digit messages117
Table M.6 – Paging segment address codes for functions message118
Table M.7 – Sub-usage codes ...122
Table M.8 – Group designation codes ...126
Table M.9 – Cycle selection codes ...127
Table M.10 – Message sorting codes ..128
Table M.11 – Codes for message types ...130
Table M.12 – Description of the control byte ...131
Table M.13 – Use of paging call repetition flag ...132
Table M.14 – Paging segment address codes for alphanumeric message133
Table M.15 – Paging segment address codes for variable length numeric message134
Table M.16 – Paging segment address codes for national paging with variable-length functions message ...135
Table M.17 – Address notification (50 bit) ..138
Table M.18 – Address notification (25 bit) ..139
Table M.19 – Z3 parity relationship ...139
Table P.1 – RT+ information elements ..148
Table P.2 – Code list and ‘RT+ class’ description of ‘RT/eRT content types (1 of 3)’157
Table Q.1 – eRT information elements ..161
International Electrotechnical Commission

Specification of the Radio Data System (RDS) for VHF/FM Sound Broadcasting in the Frequency Range from 87.5 MHz to 108.0 MHz

Foreword

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publication.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62106 has been prepared by technical area 1: Terminals for audio, video and data services and contents, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

This third edition cancels and replaces the second edition, published in 2009 and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- for the RDS feature EON and the use of group types 14A and 14B some additional explanations were added;
- in Annex E, containing the character code tables to be used in RDS, the explanation for Table E.1 and Table E.2 was extended;
- several small typing errors were corrected;
- to Enhanced RadioText in Annex Q an additional explanation was added.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/2122A/CDV</td>
<td>100/2418/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.¹

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

¹ For technical reasons equations and some figures had to be left unchanged and are not in accordance with the ISO/IEC Directives, Part 2:2011.
INTRODUCTION

IEC 62106:2000 (first edition) and IEC 62106:2009 (second edition) have the same main text and annex structure. However, the main text of this edition is slightly restructured to more closely conform to ISO/IEC Directives, Part 2:2011. Nevertheless, cross-referencing between this edition and the previous editions remains possible. To find the corresponding subclause quickly between this edition and the first edition, it is basically sufficient to subtract 3 clauses. Example: see 3.1.5.1 in the first edition, published in 2000 becomes, see 6.1.5.1.
1 Scope

This International Standard describes the Radio Data System, RDS, intended for application to VHF/FM sound broadcasts in the range 87.5 MHz to 108.0 MHz which may carry either stereophonic (pilot-tone system) or monophonic programmes (as stated in ITU-R Recommendation BS 450-3 and ITU-R Recommendation BS.643-3). The main objectives of RDS are to enable improved functionality for FM receivers and to make them more user-friendly by using features such as Programme Identification, Programme Service name display and, where applicable, automatic tuning for portable and car radios, in particular. The relevant basic tuning and switching information therefore has to be implemented by the type 0 group (see 6.1.5.1), and it is not optional unlike many of the other possible features in RDS.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14819 (all parts), Intelligent transport systems – Traffic and travel information messages via traffic message coding

ITU-R Recommendation BS.450-3, Transmission standards for FM sound broadcasting at VHF

ITU-R Recommendation BS.643-3, Radio data system for automatic tuning and other applications in FM radio receivers for use with pilot-tone system

US NRSC-4-B, National Radio Systems Committee – NRSC-4-A: United States RBDS standard

ETSI EN 301 700, Digital Audio Broadcasting (DAB); VHF/FM broadcasting: cross referencing to simulcast DAB services by RDS-ODA 147