Medical electrical equipment –
Characteristics of digital X-ray imaging devices –
Part 1: Determination of the detective quantum efficiency

Les appareils électromédicaux –
Caractéristiques des appareils d'imagerie à rayonnement X –
Partie 1: Détermination de l'efficacité quantique de détection

© IEC 2003 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.
CONTENTS

FOREWORD ... 3
INTRODUCTION ... 5
1 Scope .. 6
2 Normative references ... 6
3 Terminology and definitions ... 7
4 Requirements .. 8
 4.1 Operating conditions ... 8
 4.2 X-RAY EQUIPMENT .. 8
 4.3 RADIATION QUALITY .. 9
 4.4 TEST DEVICE ... 10
 4.5 Geometry ...11
 4.6 IRRADIATION conditions ...13
 4.6.1 General conditions ...13
 4.6.2 Exposure measurement ...13
 4.6.3 Avoidance of LAG EFFECTS ..14
 4.6.4 IRRADIATION to obtain the CONVERSION FUNCTION ...14
 4.6.5 IRRADIATION for determination of the NOISE POWER SPECTRUM14
 4.6.6 IRRADIATION with TEST DEVICE in the RADIATION BEAM15
5 Corrections of RAW DATA ...16
6 Determination of the DETECTIVE QUANTUM EFFICIENCY ...16
 6.1 Definition and formula of $DQE(u,v)$...16
 6.2 Parameters to be used for evaluation ..17
 6.3 Determination of different parameters from the images ..17
 6.3.1 Linearization of data ..17
 6.3.2 The NOISE POWER SPECTRUM (NPS)...18
 6.3.3 Determination of the MODULATION TRANSFER FUNCTION (MTF)20
7 Format of conformance statement ...20
8 Accuracy .. 21

Annex A (normative) Determination of LAG EFFECTS ..23
 A.1 Test of additive LAG EFFECTS ..23
 A.2 Test of multiplicative LAG EFFECTS ...23
Annex B (normative) Terminology – Index of defined terms ..26
Annex C (informative) Calculation of the input NOISE POWER SPECTRUM 27

Bibliography ..28
INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEDICAL ELECTRICAL EQUIPMENT –
CHARACTERISTICS OF DIGITAL X-RAY IMAGING DEVICES –

Part 1: Determination of the detective quantum efficiency

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as clearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62220-1 has been prepared by subcommittee 62B: Diagnostic imaging equipment, of IEC technical committee 62: Electrical equipment in medical practice.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>62B/493/FDIS</td>
<td>62B/506/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
In this standard, terms printed in SMALL CAPITALS are used as defined in IEC 60788, in Clause 3 of this standard or other IEC publications referenced in Annex B. Where a defined term is used as a qualifier in another defined or undefined term it is not printed in SMALL CAPITALS, unless the concept thus qualified is defined or recognized as a “derived term without definition”.

NOTE Attention is drawn to the fact that, in cases where the concept addressed is not strongly confined to the definition given in one of the publications listed above, a corresponding term is printed in lower-case letters.

The committee has decided that the contents of this publication will remain unchanged until 2006-12. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
INTRODUCTION

Digital X-ray imaging devices are increasingly used in medical diagnosis and will widely replace conventional (analogue) imaging devices such as screen-film systems or analogue X-ray image intensifier television systems in the future. It is necessary, therefore, to define parameters that describe the specific imaging properties of these digital X-ray imaging devices and to standardize the measurement procedures employed.

There is growing consensus in the scientific world that the detective quantum efficiency (DQE) is the most suitable parameter for describing the imaging performance of an X-ray imaging device. The DQE describes the ability of the imaging device to preserve the signal-to-noise ratio from the radiation field to the resulting digital image data. Since in X-ray imaging, the noise in the radiation field is intimately coupled to the exposure level, DQE values can also be considered to describe the dose efficiency of a given imaging device.

NOTE 1 In spite of the fact that the DQE is widely used to describe the performance of imaging devices, the connection between this physical parameter and the decision performance of a human observer is not yet completely understood [1], [3].

NOTE 2 The standard IEC 61262-5 specifies a method to determine the DQE of X-ray image intensifiers at nearly zero spatial frequency. It focuses only on the electro-optical components of X-ray image intensifiers, not on the imaging properties as this standard does. As a consequence, the output is measured as an optical quantity (luminance), and not as digital data. Moreover, IEC 61262-5 prescribes the use of a radiation source assembly, whereas this standard prescribes the use of an X-ray tube. The scope of IEC 61262-5 is limited to X-ray image intensifiers and does not interfere with the scope of this standard.

The DQE is already widely used by manufacturers to describe the performance of their equipment. The specification of the DQE is also required by regulatory agencies (such as the Food and Drug Administration (FDA)) for admission procedures. However, there is presently no standard governing either the measurement conditions or the measurement procedure with the consequence that values from different sources may not be comparable.

This standard has therefore been developed in order to specify the measurement procedure together with the format of the conformance statement for the detective quantum efficiency of digital X-ray imaging devices.

In the DQE calculations proposed in this standard, it is assumed that system response is measured for objects that attenuate all energies equally (task-independent) [5].

The standard will be beneficial for manufacturers, users, distributors and regulatory agencies. It can be regarded as the first of a series describing all the relevant parameters of digital X-ray imaging devices.
MEDICAL ELECTRICAL EQUIPMENT –
CHARACTERISTICS OF DIGITAL X-RAY IMAGING DEVICES –

Part 1: Determination of the detective quantum efficiency

1 Scope

This part of IEC 62220 specifies the method for the determination of the DETECTIVE QUANTUM EFFICIENCY (DQE) of DIGITAL X-RAY IMAGING DEVICES as a function of exposure and of SPATIAL FREQUENCY for the working conditions in the range of the medical application as specified by the MANUFACTURER.

This part of IEC 62220 is applicable to projection DIGITAL X-RAY IMAGING DEVICES producing IMAGES in digital format that are used for medical diagnosis. It is restricted to DIGITAL X-RAY IMAGING DEVICES that are used for radiographic imaging, such as CR systems, selenium-based systems, flat panel detectors, optically coupled CCD detectors, and digital X-RAY IMAGE INTENSIFIERS used for single exposures.

This part of IEC 62220 is not applicable to

– DIGITAL X-RAY IMAGING DEVICES intended to be used in mammography or in dental radiography;
– COMPUTED TOMOGRAPHY;
– systems in which the X-ray field is scanned across the patient; and
– devices for dynamic imaging (where series of images are acquired, as in fluoroscopic or cardiac imaging).

NOTE The devices noted above are excluded because they contain many parameters (for instance, beam qualities, geometry, time dependence, etc.) which differ from those important for general radiography. It is intended to treat some of these techniques in separate standards as has been done for other topics, for instance for speed and contrast, in IEC and ISO standards.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60336:1993, X-ray tube assemblies for medical diagnosis – Characteristics of focal spots
IEC 60601-2-7: Medical electrical equipment – Part 2-7: Particular requirements for the safety of high-voltage generators of diagnostic X-ray generators
IEC 60788:1984, Medical radiology – Terminology
IEC 61267:1994, Medical diagnostic X-ray equipment – Radiation conditions for use in the determination of characteristics