INTERNATIONAL STANDARD

IEC 62270

First edition 2004-04

Hydroelectric power plant automation – Guide for computer-based control

© IEC 2004 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE XB

For price, see current catalogue
CONTENTS

FOREWORD4

INTRODUCTION6

1 Overview7
 1.1 Scope ... 7
 1.2 Purpose ... 7

2 Normative references .. 7

3 Terms and definitions .. 8

4 Functional capabilities ...13
 4.1 General ... 13
 4.2 Control capabilities .. 13
 4.3 Data acquisition capabilities ... 22
 4.4 Alarm processing and diagnostics .. 23
 4.5 Report generation .. 24
 4.6 Maintenance management interface ... 24
 4.7 Data archival and retrieval .. 24
 4.8 Operation scheduling and forecasting ... 24
 4.9 Data access ... 25
 4.10 Operator simulation training ... 25
 4.11 Typical control parameters .. 25

5 System architecture, communications, and databases ...26
 5.1 General ... 26
 5.2 System classification ... 27
 5.3 System architecture characteristics ... 28
 5.4 Control data networks ... 33
 5.5 Data bases and software configuration .. 37

6 User and plant interfaces ..39
 6.1 User interfaces .. 39
 6.2 Plant interfaces .. 40

7 System performance ... 43
 7.1 General ... 43
 7.2 Hardware ... 44
 7.3 Communications .. 45
 7.4 Measuring performance ... 46

8 System backup capabilities ...47
 8.1 General ... 47
 8.2 Design principles .. 48
 8.3 Basic functions .. 48
 8.4 Design of equipment for backup control ... 48
 8.5 Alarm handling ... 49
 8.6 Protective function ... 50

9 Site integration and support systems ... 50
 9.1 Interface to existing equipment ... 50
 9.2 Environmental conditions ... 50
 9.3 Power source ... 51
INTERNATIONAL ELECTROTECHNICAL COMMISSION

HYDROELECTRIC POWER PLANT AUTOMATION –
GUIDE FOR COMPUTER-BASED CONTROL

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62270 has been prepared by IEC technical committee 4: Hydraulic turbines.

The text of this standard is based on the IEEE Standard 1249 (1996) IEEE guide for computer-based control for hydroelectric power plant automation. It was submitted to the national committees for voting under the Fast Track procedure as the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/188/FDIS</td>
<td>4/190/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
The committee has decided that the contents of this publication will remain unchanged until 2005. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
INTRODUCTION

Automation of hydroelectric generating plants has been a known technology for many years. Due to the relative simplicity of the control logic for hydroelectric power plants, the application of computer-based control has lagged, compared to other types of generating stations, such as fossil. Now that computer-based control can be implemented for comparable costs as relay-based logic and can incorporate additional features, it is being applied in hydroelectric power stations worldwide, both in new installations and in the rehabilitation of older plants.
HYDROELECTRIC POWER PLANT AUTOMATION –
GUIDE FOR COMPUTER-BASED CONTROL

1 Overview

1.1 Scope

This standard sets down guidelines for the application, design concepts, and implementation of computer-based control systems for hydroelectric plant automation. It addresses functional capabilities, performance requirements, interface requirements, hardware considerations, and operator training. It includes recommendations for system testing and acceptance. Finally, case studies of actual computer-based automatic control applications are presented.

The automation of control and data logging functions has relieved the plant operator of these tasks, allowing the operator more time to concentrate on other duties. In many cases, the plant’s operating costs can be significantly reduced by automation (primarily via staff reduction) while still maintaining a high level of unit control reliability.

Automatic control systems for hydroelectric units based on electromechanical relay logic have been in general use for a number of years and, in fact, were considered standard practice for the industry. Within the last decade, microprocessor-based controllers have become available that are suitable for operation in a power plant environment. These computer-based systems have been applied for data logging, alarm monitoring, and unit and plant control. Advantages of computer-based control include use of graphical user interfaces, the incorporation of sequence of events and trending into the control system, the incorporation of artificial intelligence and expert system capabilities, and reduced plant life cycle cost.

1.2 Purpose

This standard is directed to the practicing engineer who has some familiarity with computer-based control systems and who is designing or implementing hydroelectric unit or plant control systems, either in a new project or as a retrofit to an existing one. This standard assumes that the control system logic has already been defined; therefore, its development is not covered. For information on control sequence logic, the reader is directed to the IEEE guides for control of hydroelectric power plants listed in Clause 2 of this standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61158, Digital data communications for measurement and control - Fieldbus for use in industrial control systems
ANSI C63.4-2001, Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz–40 GHz

1 ANSI publications are available from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
2 IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.
IEEE Std 485-1997, IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications (ANSI)

IEEE 1379: 2000, IEEE Recommended Practice for Data Communications Between Remote Terminal Units and Intelligent Electronic Devices in a Substation (ANSI)

3 ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembe, CH-1211, Genève 20, Switzerland/Suisse. ISO publications are also available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.