CONTENTS

FOREWORD ... 17

1 General .. 23
 1.1 Scope ... 23
 1.2 Normative references .. 23

2 Normal and special service conditions .. 27

3 Definitions .. 27
 3.1 General terms ... 27
 3.2 Assemblies ... 33
 3.3 Parts of assemblies ... 33
 3.4 Switching devices ... 33
 3.5 Parts of circuit-breakers ... 39
 3.6 Operation ... 43
 3.7 Characteristic quantities ... 47
 3.8 Index of definitions .. 59

4 Ratings ... 67
 4.1 Rated voltage \((U_r)\) .. 69
 4.2 Rated insulation level .. 69
 4.3 Rated frequency \((f_r)\) .. 71
 4.4 Rated normal current \((I_n)\) and temperature rise .. 71
 4.5 Rated short-time withstand current \((I_k)\) .. 71
 4.6 Rated peak withstand current \((I_{pk})\) .. 71
 4.7 Rated duration of short circuit \((I_{du})\) .. 71
 4.8 Rated supply voltage of closing and opening devices and of auxiliary and control circuits \((U_s)\) ... 71
 4.9 Rated supply frequency of closing and opening devices and auxiliary circuits 71
 4.10 Rated pressures of compressed gas supply for insulation, operation and/or interruption ... 71

5 Design and construction .. 113
 5.1 Requirements for liquids in circuit-breakers ... 113
 5.2 Requirements for gases in circuit-breakers ... 113
 5.3 Earthing of circuit-breakers ... 113
 5.4 Auxiliary equipment .. 113
 5.5 Dependent power closing ... 115
 5.6 Stored energy closing .. 115
 5.7 Independent manual operation .. 117
 5.8 Operation of releases .. 117
 5.9 Low- and high-pressure interlocking devices .. 119
 5.10 Nameplates .. 119
 5.11 Interlocking devices ... 123
 5.12 Position indication ... 123
 5.13 Degrees of protection by enclosures ... 123
 5.14 Creepage distances .. 123
 5.15 Gas and vacuum tightness ... 123
 5.16 Liquid tightness .. 123
 5.17 Flammability .. 123
 5.18 Electromagnetic compatibility ... 123
6 Type tests ... 127
6.1 General ... 131
6.2 Dielectric tests .. 131
6.3 Radio interference voltage (r.i.v.) tests ... 137
6.4 Measurement of the resistance of the main circuit ... 137
6.5 Temperature-rise tests ... 137
6.6 Short-time withstand current and peak withstand current tests 139
6.7 Verification of the degree of protection ... 141
6.8 Tightness tests ... 141
6.9 Electromagnetic compatibility (EMC) tests ... 141
6.101 Mechanical and environmental tests ... 141
6.102 Miscellaneous provisions for making and breaking tests 165
6.103 Test circuits for short-circuit making and breaking tests 205
6.104 Short-circuit test quantities ... 207
6.105 Short-circuit test procedure ... 235
6.106 Basic short-circuit test-duties ... 239
6.107 Critical current tests ... 249
6.108 Single-phase and double-earth fault tests .. 249
6.109 Short-line fault tests ... 253
6.110 Out-of-phase making and breaking tests ... 261
6.111 Capacitive current switching tests .. 265
6.112 Special requirements for making and breaking tests on class E2 circuit-breakers .. 293
7 Routine tests ... 295
7.1 Dielectric test on the main circuit .. 295
7.2 Dielectric test on auxiliary and control circuits .. 297
7.3 Measurement of the resistance of the main circuit ... 297
7.4 Tightness test .. 297
7.5 Design and visual checks ... 297
8 Guide to the selection of circuit-breakers for service .. 301
9 Information to be given with enquiries, tenders and orders 321
10 Rules for transport, storage, installation, operation and maintenance 327
10.1 Conditions during transport, storage and installation 327
10.2 Installation ... 327
10.3 Operation ... 339
10.4 Maintenance ... 341
11 Safety ... 341

Annex A (normative) Calculation of transient recovery voltages for short-line faults from rated characteristics .. 447
Annex B (normative) Tolerances on test quantities during type tests 463
Annex C (normative) Records and reports of type tests ... 477
Annex D (normative) Determination of short-circuit power factor 485
Annex E (normative) Method of drawing the envelope of the prospective transient recovery voltage of a circuit and determining the representative parameters ... 489
Annex F (normative) Methods of determining prospective transient recovery voltage waves .. 497
Annex G (normative) Rationale behind introduction of circuit-breakers class E2 .. 531
Annex H (informative) Inrush currents of single and back-to-back capacitor banks 533
Figure 23c – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes fully displaced upward from the reference curve (+10 %, –0 %), contact separation in this example at time $t = 20$ ms ...389

Figure 23d – Reference mechanical travel characteristics (idealised curve) with the prescribed envelopes fully displaced downward from the reference curve (+0 %, –10 %), contact separation in this example at time $t = 20$ ms ...389

Figure 24 – Equivalent testing set-up for unit testing of circuit-breakers with more than one separate interrupter units ..391

Figure 25a – Preferred circuit ...393

Figure 25b – Alternative circuit ...393

Figure 25 – Earthing of test circuits for three-phase short-circuit tests, first-pole-to-clear factor 1,5 ...393

Figure 26a – Preferred circuit ...395

Figure 26b – Alternative circuit ...395

Figure 26 – Earthing of test circuits for three-phase short-circuit tests, first-pole-to-clear factor 1,3 ...395

Figure 27a – Preferred circuit ...397

Figure 27b – Alternative circuit not applicable for circuit-breakers where the insulation between phases and/or to earth is critical (e.g. GIS or dead tank circuit-breakers) ...397

Figure 27 – Earthing of test circuits for single-phase short-circuit tests, first-pole-to-clear factor 1,5 ...397

Figure 28a – Preferred circuit ...399

Figure 28b – Alternative circuit, not applicable for circuit-breakers where the insulation between phases and/or to earth is critical (e.g. GIS or dead tank circuit-breakers) ...399

Figure 28 – Earthing of test circuits for single-phase short-circuit tests, first-pole-to-clear factor 1,3 ...399

Figure 29 – Graphical representation of the three valid symmetrical breaking operations for three-phase tests in a non-solidly earthed neutral system (first-pole-to-clear factor 1,5) ...401

Figure 30 – Graphical representation of the three valid symmetrical breaking operations for three-phase tests in a solidly earthed neutral system (first-pole-to-clear factor 1,3) ...403

Figure 31 – Graphical representation of the three valid asymmetrical breaking operations for three-phase tests in a non-solidly earthed neutral system (first-pole-to-clear factor 1,5) ...405

Figure 32 – Graphical representation of the three valid asymmetrical breaking operations for three-phase tests in a solidly earthed neutral system (first-pole-to-clear factor 1,3) ...407

Figure 33 – Graphical representation of the three valid symmetrical breaking operations for single-phase tests in substitution of three-phase conditions in a non-solidly earthed neutral system (first-pole-to-clear factor 1,5) ...409

Figure 34 – Graphical representation of the three valid asymmetrical breaking operations for single-phase tests in substitution of three-phase conditions in a non-solidly earthed neutral system (first-pole-to-clear factor 1,5) ...411

Figure 35 – Graphical representation of the three valid symmetrical breaking operations for single-phase tests in substitution of three-phase conditions in a solidly earthed neutral system (first-pole-to-clear factor 1,3) ...413
Figure 36 – Graphical representation of the three valid asymmetrical breaking operations for single-phase tests in substitution of three-phase conditions in a solidly earthed neutral system (first-pole-to-clear factor 1,3) ..415

Figure 37 – Graphical representation of the interrupting window and the voltage factor \(k_p \), determining the TRV of the individual pole, for systems with a first-pole-to-clear factor of 1,3...417

Figure 38 – Graphical representation of the interrupting window and the voltage factor \(k_p \), determining the TRV of the individual pole, for systems with a first-pole-to-clear factor of 1,5417

Figure 39 – Example of prospective test TRV with four-parameter envelope which satisfies the conditions to be met during type test – Case of specified TRV with four-parameter reference line ..419

Figure 40 – Example of prospective test TRV with two-parameter envelope which satisfies the conditions to be met during type test: case of specified TRV with two-parameter reference line...421

Figure 41 – Example of prospective test TRV with four-parameter envelope which satisfies the conditions to be met during type-test – Case of specified TRV with two-parameter reference line ..423

Figure 42 – Example of prospective test TRV with two-parameter envelope which satisfies the conditions to be met during type-test – Case of specified TRV with four-parameter reference line ...423

Figure 43 – Example of prospective test TRV-waves and their combined envelope in two-part test ..425

Figure 44 – Determination of power frequency recovery voltage ...427

Figure 45 – Necessity of additional single-phase tests and requirements for testing ...429

Figure 46 – Basic circuit arrangement for short-line fault testing and prospective TRV-circuit-type a) according to 6.109.3: Source side and line side with time delay ..431

Figure 47 – Basic circuit arrangement for short-line fault testing – circuit type b1) according to 6.109.3: Source side with ITRV and line side with time delay ...433

Figure 48 – Basic circuit arrangement for short-line fault testing – circuit type b2) according to 6.109.3: Source side with time delay and line side without time delay ..435

Figure 49 – Flow chart for the choice of short-line fault test circuits for class S2 circuit-breakers with direct connection to overhead lines (without intervening cable)...437

Figure 50 – Compensation of deficiency of the source side time delay by an increase of the excursion of the line side voltage ...439

Figure 51 – Test circuit for single-phase out-of-phase tests ...441

Figure 52 – Test circuit for out-of-phase tests using two voltages separated by 120 electrical degrees ...441

Figure 53 – Test circuit for out-of-phase tests with one terminal of the circuit-breaker earthed (subject to agreement of the manufacturer) ...443

Figure 54 – Recovery voltage for capacitive current breaking tests ...445

Figure A.1 – Typical graph of line and source side TRV parameters – Line side and source side with time delay ...461

Figure A.2 – Typical graph of line and source side TRV parameters – Line side and source side with time delay, source side with ITRV ...461

Figure E.1– Representation by four parameters of a prospective transient recovery voltage of a circuit – Case E.2 c) 1) ..493

Figure E.2 – Representation by four parameters of a prospective transient recovery voltage of a circuit – Case E.2 c) 2) ..493
Table 5 – Preferred values of rated capacitive switching currents...107
Table 6 – Nameplate information..121
Table 7 – Type tests ... 129
Table 8 – Number of operating sequences..151
Table 9 – Examples of static horizontal and vertical forces for static terminal load test165
Table 10 – Current peak values and current loop durations during the arcing period for 50 Hz operation in relation with short-circuit test-duty T100a...197
Table 11 – Current peak values and current loop durations during the arcing period for 60 Hz operation in relation with short-circuit test-duty T100a...199
Table 12 – Interrupting window for tests with symmetrical current...203
Table 26 – Standard values of prospective transient recovery voltage for class S1 circuit-breakers – Rated voltage higher than 1 kV and less than 100 kV – Representation by two parameters..223
Table 27 – Standard values of prospective transient recovery voltage for class S2 circuit-breakers – Rated voltage equal to or higher than 15 kV and less than 100 kV – Representation by two parameters..227
Table 14a – Standard values of prospective transient recovery voltage – Rated voltages of 100 kV to 170 kV for non-solidly earthed systems – Representation by four parameters (T100, T60, OP1 and OP2) or two parameters (T30 and T10) ...229
Table 14b – Standard values of prospective transient recovery voltage – Rated voltages of 100 kV to 170 kV for non-solidly earthed systems – Representation by four parameters (T100, T60, OP1 and OP2) or two parameters (T30 and T10) ...233
Table 15 – Invalid tests... 239
Table 16 – TRV parameters for single-phase and double-earth fault tests..............................251
Table 17 – Test-duties to demonstrate the out-of-phase rating..265
Table 18 – Class C2 test-duties..277
Table 19 – Class C1 test-duties ..285
Table 20 – Specified values of u_1, t_1, u_c and t_2...291
Table 21 – Operating sequence for electrical endurance test on class E2 circuit-breakers intended for auto-reclosing duty according to 6.112.2...295
Table 22 – Application of voltage for dielectric test on the main circuit.................................297
Table 23 – Relationship between short-circuit power factor, time constant and power frequency...311
Table A.1 – Ratios of voltage-drop and source-side TRV ..451
Table B.1 – Tolerances on test quantities for type tests ..465
Table F.1 – Methods for determination of prospective TRV ..513
Table 1 – Circuit specific fault level study results for 275 kV transmission substation............569
Table J.1 – Actual percentage short-line fault breaking currents..579
Table M.1 – Standard values of prospective transient recovery voltage for T30, for circuit-breakers intended to be connected to a transformer with a connection of small capacitance – Rated voltage higher than 1 kV and less than 100 kV – Representation by two parameters...605
INTRODUCTION ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 100: High-voltage alternating-current circuit-breakers

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-100 has been prepared by subcommittee 17A: High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

The technical content is therefore identical to the base edition and its amendments and has been prepared for user convenience.

It bears the edition number 1.2.

A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.
This standard shall be read in conjunction with IEC 60694, second edition, published in 1996, to which it refers and which is applicable unless otherwise specified in this standard. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in IEC 60694. Amendments to these clauses and subclauses are given under the same references whilst additional subclauses are numbered from 101.

Annexes A, B, C, D, E, F, G and M form an integral part of this standard.

Annexes H, I, J, K and L are for information only.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
COMMON NUMBERING OF STANDARDS FALLING UNDER THE RESPONSIBILITY OF SC 17A AND SC 17C

In accordance with the decision taken at the joint SC 17A/SC 17C meeting in Frankfurt (item 20.7 of 17A/535/RM) a common numbering system will be established of the standards falling under the responsibility of SC 17A and SC 17C. IEC 62271 (with title High-voltage switchgear and controlgear) is the basis of the common standard.

Numbering of the standards will follow the following principle:

a) Common standards prepared by SC 17A and SC 17C will start with IEC 62271-001;
b) Standards of SC 17A will start with IEC 62271-100;
c) Standards of SC 17C will start with number IEC 62271-200;
d) Guides prepared by SC 17A and SC 17C will start with number IEC 62271-300.

The table below relates the new numbers to the old numbers:

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Old number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Common specifications</td>
<td>IEC 60694, IEC 60516</td>
</tr>
<tr>
<td>100</td>
<td>High-voltage alternating current circuit-breakers</td>
<td>IEC 60056</td>
</tr>
<tr>
<td>101</td>
<td>Synthetic testing</td>
<td>IEC 60427</td>
</tr>
<tr>
<td>102</td>
<td>High-voltage alternating current disconnectors and earthing switches</td>
<td>IEC 60129</td>
</tr>
<tr>
<td>103</td>
<td>High-voltage switches for rated voltages above 1 kV and less than 52 kV</td>
<td>IEC 60265-1</td>
</tr>
<tr>
<td>104</td>
<td>High-voltage switches for rated voltages of 52 kV and above</td>
<td>IEC 60265-2</td>
</tr>
<tr>
<td>105</td>
<td>High voltage alternating current switch-fuse combinations</td>
<td>IEC 60420</td>
</tr>
<tr>
<td>106</td>
<td>High-voltage alternating current contactors and contactor based motor-starters</td>
<td>IEC 60470</td>
</tr>
<tr>
<td>200</td>
<td>Metal enclosed switchgear and controlgear for rated voltages up to and including 38 kV</td>
<td>IEC 60298</td>
</tr>
<tr>
<td>201</td>
<td>Insulation-enclosed switchgear and controlgear for rated voltages up to and including 52 kV</td>
<td>IEC 60466</td>
</tr>
<tr>
<td>202</td>
<td>High-voltage/low voltage prefabricated substations</td>
<td>IEC 61330</td>
</tr>
<tr>
<td>203</td>
<td>Gas-insulated metal enclosed switchgear for rated voltages above 52 kV</td>
<td>IEC 60517, IEC 61269</td>
</tr>
<tr>
<td>204</td>
<td>High-voltage gas-insulated transmission lines for rated voltages of 72.5 kV and above</td>
<td>IEC 61640</td>
</tr>
<tr>
<td>300</td>
<td>Guide for seismic qualification</td>
<td>IEC 61666</td>
</tr>
<tr>
<td>301</td>
<td>Guide for inductive load switching</td>
<td>IEC 61233</td>
</tr>
<tr>
<td>302</td>
<td>Guide for short-circuit and switching test procedures for metal-enclosed and dead tank circuit-breakers</td>
<td>IEC 61633</td>
</tr>
<tr>
<td>303</td>
<td>Use and handling of sulphur hexafluoride (SF₆) in high-voltage switchgear and controlgear</td>
<td>IEC 61634</td>
</tr>
<tr>
<td>304</td>
<td>Additional requirements for enclosed switchgear and controlgear from 1 kV to 72.5 kV to be used in severe climatic conditions</td>
<td>IEC 60932</td>
</tr>
<tr>
<td>305</td>
<td>Cable connections for gas-insulated metal-enclosed switchgear for rated voltages above 52 kV</td>
<td>IEC 60859</td>
</tr>
<tr>
<td>306</td>
<td>Direct connection between power transformers and gas-insulated metal-enclosed switchgear for rated voltages above 52 kV</td>
<td>IEC 61639</td>
</tr>
<tr>
<td>307</td>
<td>The use of electronic and associated technologies in auxiliary equipment of switchgear and controlgear</td>
<td>IEC 62063</td>
</tr>
<tr>
<td>308</td>
<td>Guide for asymmetrical short-circuit breaking test duty T100a</td>
<td>-</td>
</tr>
</tbody>
</table>
1 General

1.1 Scope

This International Standard is applicable to a.c. circuit-breakers designed for indoor or outdoor installation and for operation at frequencies of 50 Hz and 60 Hz on systems having voltages above 1 000 V.

It is only applicable to three-pole circuit-breakers for use in three-phase systems and single-pole circuit-breakers for use in single-phase systems. Two-pole circuit-breakers for use in single-phase systems and application at frequencies lower than 50 Hz are subject to agreement between manufacturer and user.

This standard is also applicable to the operating devices of circuit-breakers and to their auxiliary equipment. However, a circuit-breaker with a closing mechanism for dependent manual operation is not covered by this standard, as a rated short-circuit making-current cannot be specified, and such dependent manual operation may be objectionable because of safety considerations.

This standard does not cover circuit-breakers intended for use on motive power units of electrical traction equipment; these are covered by IEC 60077 [4].

Generator circuit-breakers installed between generator and step-up transformer are not within the scope of this standard.

Switching of inductive loads is covered by IEC 61233.

Circuit-breakers with an intentional non-simultaneity between the poles, with the exception of circuit-breakers providing single-pole auto-reclosing, are not within the scope of this standard.

This standard does not cover self-tripping circuit-breakers with mechanical tripping devices or devices which cannot be made inoperative.

By-pass circuit-breakers installed in parallel with line series capacitors and their protective equipment are not within the scope of this standard, these are covered by IEC 60143-2 [6].

NOTE Tests to prove the performance under abnormal conditions should be subject to agreement between manufacturer and user. Such abnormal conditions are, for instance, cases where the voltage is higher than the rated voltage of the circuit-breaker, conditions which may occur due to sudden loss of load on long lines or cables.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid International Standards.

1) Figures in square brackets refer to the bibliography.

IEC 60050(441):1984, International Electrotechnical Vocabulary – Chapter 441: Switchgear, controlgear and fuses

IEC 60059: 1999, IEC standard current ratings

IEC 60060: all parts, High-voltage test techniques

IEC 60129:1984, Alternating current disconnectors and earthing switches

IEC 60137:1995, Bushings for alternating voltages above 1 000 V

IEC 60255-3:1989, Electrical relays – Part 3: Single output energizing quantity measuring relays with dependent or independent time

IEC 60296:1982, Specification for unused mineral insulating oils for transformers and switchgear

IEC 60376:1971, Specification and acceptance of new sulphur hexafluoride

IEC 60427:1989, Synthetic testing of high-voltage alternating current circuit-breakers

IEC 60480:1974, Guide to the checking of sulphur hexafluoride (SF₆) taken from electrical equipment

IEC 60529:1989, Degrees of protection provided by enclosures (IP code)

IEC 60694:1996, Common specifications for high-voltage switchgear and controlgear standards

IEC 61634:1995, High-voltage switchgear and controlgear – Use and handling of sulphur hexafluoride (SF₆) in high-voltage switchgear and controlgear

IEC 62215, High-voltage alternating current circuit-breakers – Guide for asymmetrical short-circuit breaking test duty T100a ²

² To be published