Universal serial bus interfaces for data and power –
Part 1-3: Universal Serial Bus interfaces – Common components –
USB Type-C™ cable and connector specification
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62680-1-3 has been prepared by technical area 14: Interfaces and methods of measurement for personal computing equipment, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

The text of this standard was prepared by the USB Implementers Forum (USB-IF). The structure and editorial rules used in this publication reflect the practice of the organization which submitted it.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/2587/CDV</td>
<td>100/2681/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

A list of all parts in the IEC 62680 series, published under the general title *Universal serial bus interfaces for data and power*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The IEC 62680 series is based on a series of specifications that were originally developed by the USB Implementers Forum (USB-IF). These specifications were submitted to the IEC under the auspices of a special agreement between the IEC and the USB-IF.

This standard is the USB-IF publication USB Type-C™ Cable and Connector Specification Revision 1.1.

The USB Implementers Forum, Inc.(USB-IF) is a non-profit corporation founded by the group of companies that developed the Universal Serial Bus specification. The USB-IF was formed to provide a support organization and forum for the advancement and adoption of Universal Serial Bus technology. The Forum facilitates the development of high-quality compatible USB peripherals (devices), and promotes the benefits of USB and the quality of products that have passed compliance testing.

ANY USB SPECIFICATIONS ARE PROVIDED TO YOU "AS IS," WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE USB IMPLEMENTERS FORUM AND THE AUTHORS OF ANY USB SPECIFICATIONS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OR INFORMATION IN THIS SPECIFICATION.

THE PROVISION OF ANY USB SPECIFICATIONS TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Entering into USB Adopters Agreements may, however, allow a signing company to participate in a reciprocal, RAND-Z licensing arrangement for compliant products. For more information, please see:

http://www.usb.org/developers/docs/http://www.usb.org/developers/devclass_docs#approved

IEC DOES NOT TAKE ANY POSITION AS TO WHETHER IT IS ADVISABLE FOR YOU TO ENTER INTO ANY USB ADOPTERS AGREEMENTS OR TO PARTICIPATE IN THE USB IMPLEMENTERS FORUM."
Universal Serial Bus
Type-C Cable and Connector Specification

Revision 1.1
April 3, 2015
NOTE Adopters may only use the USB Type-C™ cable and connector to implement USB or third party functionality as expressly described in this Specification; all other uses are prohibited.

LIMITED COPYRIGHT LICENSE: The USB 3.0 Promoters grant a conditional copyright license under the copyrights embodied in the USB Type-C Cable and Connector Specification to use and reproduce the Specification for the sole purpose of, and solely to the extent necessary for, evaluating whether to implement the Specification in products that would comply with the specification. Without limiting the foregoing, use of the Specification for the purpose of filing or modifying any patent application to target the Specification or USB compliant products is not authorized. Except for this express copyright license, no other rights or licenses are granted, including without limitation any patent licenses. In order to obtain any additional intellectual property licenses or licensing commitments associated with the Specification a party must execute the USB 3.0 Adopters Agreement. NOTE: By using the Specification, you accept these license terms on your own behalf and, in the case where you are doing this as an employee, on behalf of your employer.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

All implementation examples and reference designs contained within this Specification are included as part of the limited patent license for those companies that execute the USB 3.0 Adopters Agreement.

USB Type-C™ and USB-C™ are trademarks of the Universal Serial Bus Implementers Forum (USB-IF). All product names are trademarks, registered trademarks, or service marks of their respective owners.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>Specification Work Group Chairs / Specification Editors</td>
<td>15</td>
</tr>
<tr>
<td>Specification Work Group Contributors</td>
<td>15</td>
</tr>
<tr>
<td>Pre-Release Draft Industry Reviewing Companies That Provided Feedback</td>
<td>17</td>
</tr>
<tr>
<td>Revision History</td>
<td>17</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>18</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>18</td>
</tr>
<tr>
<td>1.2 Scope</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Related Documents</td>
<td>19</td>
</tr>
<tr>
<td>1.4 Conventions</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1 Precedence</td>
<td>19</td>
</tr>
<tr>
<td>1.4.2 Keywords</td>
<td>19</td>
</tr>
<tr>
<td>1.4.3 Numbering</td>
<td>20</td>
</tr>
<tr>
<td>1.5 Terms and Abbreviations</td>
<td>21</td>
</tr>
<tr>
<td>2 Overview</td>
<td>22</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>22</td>
</tr>
<tr>
<td>2.2 USB Type-C Receptacles, Plugs and Cables</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Configuration Process</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 DFP-to-UFP Attach/Detach Detection</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Plug Orientation/Cable Twist Detection</td>
<td>25</td>
</tr>
<tr>
<td>2.3.3 Initial DFP-to-UFP (host-to-device) and Power Relationships Detection</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4 USB Type-C Vbus Current Detection and Usage</td>
<td>26</td>
</tr>
<tr>
<td>2.3.5 USB PD Communication</td>
<td>27</td>
</tr>
<tr>
<td>2.3.6 Functional Extensions</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Vbus</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Vconn</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Hubs</td>
<td>28</td>
</tr>
<tr>
<td>3 Mechanical</td>
<td>28</td>
</tr>
<tr>
<td>3.1 Overview</td>
<td>28</td>
</tr>
<tr>
<td>3.1.1 Compliant Connectors</td>
<td>28</td>
</tr>
<tr>
<td>3.1.2 Compliant Cable Assemblies</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3 Compliant USB Type-C to Legacy Cable Assemblies</td>
<td>29</td>
</tr>
<tr>
<td>3.1.4 Compliant USB Type-C to Legacy Adapter Assemblies</td>
<td>29</td>
</tr>
<tr>
<td>3.2 USB Type-C Connector Mating Interfaces</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1 Interface Definition</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2 Reference Designs</td>
<td>45</td>
</tr>
<tr>
<td>3.2.3 Pin Assignments and Descriptions</td>
<td>52</td>
</tr>
<tr>
<td>3.3 Cable Construction and Wire Assignments</td>
<td>54</td>
</tr>
<tr>
<td>3.3.1 Cable Construction (Informative)</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2 Wire Assignments</td>
<td>55</td>
</tr>
<tr>
<td>3.3.3 Wire Gauges and Cable Diameters (Informative)</td>
<td>57</td>
</tr>
<tr>
<td>3.4 Standard USB Type-C Cable Assemblies</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1 USB Full-Featured Type-C Cable Assembly</td>
<td>58</td>
</tr>
<tr>
<td>3.4.2 USB 2.0 Type-C Cable Assembly</td>
<td>60</td>
</tr>
</tbody>
</table>

Copyright © 2015 USB 3.0 Promoter Group. All rights reserved.
4.6.1 Power Requirements during USB Suspend ... 145
Figure 2-1 – USB Type-C Receptacle Interface (Front View) .. 23
Figure 2-2 – USB Full-Featured Type-C Plug Interface (Front View) .. 23
Figure 3-1 – USB Type-C Receptacle Interface Dimensions .. 32
Figure 3-2 – Reference Design USB Type-C Plug External EMC Spring Contact Zones 34
Figure 3-3 – USB Full-Featured Type-C Plug Interface Dimensions .. 35
Figure 3-4 – Reference Footprint for a USB Type-C Vertical Mount Receptacle (Informative) 38
Figure 3-5 – Reference Footprint for a USB Type-C Dual-Row SMT Right Angle Receptacle (Informative) ... 39
Figure 3-6 – Reference Footprint for a USB Type-C Hybrid Right-Angle Receptacle (Informative) ... 40

Copyright © 2015 USB 3.0 Promoter Group. All rights reserved.
Table 3-5 – USB Type-C Receptacle Interface Pin Assignments for USB 2.0-only Support .. 54
Table 3-6 – USB Type-C Standard Cable Wire Assignments ... 56
Table 3-7 – USB Type-C Cable Wire Assignments for Legacy Cables/Adapters .. 57
Table 3-8 – Reference Wire Gauges for standard USB Type-C Cable Assemblies .. 58
Table 3-9 – Reference Wire Gauges for USB Type-C to Legacy Cable Assemblies .. 58
Table 3-10 – USB Full-Featured Type-C Standard Cable Assembly Wiring .. 59
Table 3-11 – USB 2.0 Type-C Standard Cable Assembly Wiring ... 60
Table 3-12 – USB Type-C to USB 3.1 Standard-A Cable Assembly Wiring ... 61
Table 3-13 – USB Type-C to USB 2.0 Standard-A Cable Assembly Wiring ... 62
Table 3-14 – USB Type-C to USB 3.1 Standard-B Cable Assembly Wiring ... 63
Table 3-15 – USB Type-C to USB 2.0 Standard-B Cable Assembly Wiring ... 64
Table 3-16 – USB Type-C to USB 2.0 Mini-B Cable Assembly Wiring ... 65
Table 3-17 – USB Type-C to USB 3.1 Micro-B Cable Assembly Wiring ... 66
Table 3-18 – USB Type-C to USB 2.0 Micro-B Cable Assembly Wiring ... 67
Table 3-19 – USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly Wiring ... 68
Table 3-20 – USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly Wiring ... 69
Table 3-21 – Differential Insertion Loss Examples for USB SuperSpeed with Twisted Pair Construction .. 70
Table 3-22 – Differential Insertion Loss Examples for USB SuperSpeed with Coaxial Construction .. 70
Table 3-23 – Coupling Matrix for Low Speed Signals ... 82
Table 3-24 – USB D+/D− Signal Integrity Requirements ... 86
Table 3-25 – USB D+/D− Signal Integrity Requirements for USB Type-C to Legacy USB Cable Assemblies .. 87
Table 3-26 – Design Targets for USB Type-C to USB 3.1 Gen 2 Legacy Cable Assemblies (Informative) ... 87
Table 3-27 – USB Type-C to USB 3.1 Gen 2 Legacy Cable Assembly Signal Integrity Requirements (Normative) ... 88
Table 3-28 – USB D+/D− Signal Integrity Requirements for USB Type-C to Legacy USB Adapter Assemblies (Normative) ... 90
Table 3-29 – Design Targets for USB Type-C to USB 3.1 Standard-A Adapter Assemblies (Informative) ... 90
Table 3-30 – USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly Signal Integrity Requirements (Normative) ... 91
Table 3-31 – Environmental Test Conditions .. 97
Table 3-32 – Reference Materials .. 98
Table 4-1 – USB Type-C List of Signals .. 103
Table 4-2 – VBUS Leakage .. 106
Table 4-3 – VCONN Source Characteristics ... 106
Table 4-4 – VCONN Sink Characteristics ... 107
Table 4-5 – USB Type-C-based Port Interoperability ... 109
Table 4-6 – Source Perspective .. 111
Table 4-7 – Source and Sink Behaviors by State ... 112
Table 4-8 – USB PD Swapping Port Behavior Summary ... 116
Table 4-9 – Source Port CC Pin State ... 122
Table 4-10 – Sink Port CC Pin State ... 122
Table 4-11 – Mandatory and Optional States .. 134
Table 4-12 – Precedence of power source usage ... 145
Table 4-13 – DFP CC Termination (Rp) Requirements .. 153
Table 4-14 – UFP CC Termination (Rd) Requirements ... 154
Table 4-15 – Powered Cable Termination Requirements .. 154
Table 4-16 – UFP CC Termination Requirements .. 154
Table 4-17 – SBU Termination Requirements ... 154
Table 4-18 – VBUS and VCONN Timing Parameters .. 155
Table 4-19 – DRP Timing Parameters ... 156
Table 4-20 – CC Timing ... 156
Table 4-21 – CC Voltages on Source Side – Default USB .. 156
Table 4-22 – CC Voltages on Source Side – 1,5 A @ 5 V .. 156
Table 4-23 – CC Voltages on Source Side – 3,0 A @ 5 V .. 157
Table 4-24 – Voltage on Sink CC Pins (Default USB Type-C Current only) 157
Table 4-25 – Voltage on Sink CC pins (Multiple Source Current Advertisements) 157
Table 4-26 – Summary of Ports and Behaviors by Product Type 159
Table 5-1 – USB Safe State Electrical Requirements ... 162
Table 5-2 – USB Billboard Device Class Availability Following Alternate Mode Entry Failure ... 162
Table 5-3 – Alternate Mode Signal Noise Ingression Requirements 162
Table 5-4 – SOP’ and SOP” Timing ... 167
Table A.1 – USB Type-C Analog Audio Pin Assignments .. 169
Table A.2 – USB Type-C Analog Audio Pin Electrical Parameter Ratings 170
Specification Work Group Chairs / Specification Editors

Intel Corporation (USB 3.0 Promoter company)
Yun Ling – Mechanical WG co-chair, Mechanical Chapter Co-editor
Bob Dunstan – Functional WG co-chair, Specification Co-author
Brad Saunders – Plenary/Functional WG chair, Specification Co-author
Seagate
Alvin Cox, Mechanical WG co-chair, Mechanical Chapter Co-editor

Specification Work Group Contributors

Advanced-Connectek, Inc. (ACON)
Glen Chandler
Vicky Chuang
Alan Tsai
Jeff Chien
Aven Kao
Stephen Yang
Lee (Dick Lee) Ching
Danny Liao
Conrad Choy
Alan MacDougall

Advanced Micro Devices
Steve Capezza
Walter Fry
Will Harris
Agilent Technologies, Inc.
James Chaote

Apple
Mahmoud Amini
William Ferry
Nathan Ng
Sree Anantharaman
Zheng Gao
James Orr
Paul Baker
Girault Jones
Keith Porthouse
Jason Chung
Keong Kam
Sascha Tietz
David Conroy
Min Kim
Colin Whitby-Strevens
Bill Cornelius
Chris Ligtenberg
Dennis Yarak

Cypress Semiconductor
Mark Fu
Anup Nayak
Sanjay Sancheti
Rushil Kadakia
Jagadeesan Raj
Subu Sankaran
Dell
Mohammed Hijazi
Sean O’Neal
Thomas Voor
David Meyers
Ernesto Ramirez

DisplayLink (UK) Ltd.
Pete Burgers
Richard Petrie
Electronics Testing Center, Taiwan
Sophia Liu

Foxconn
Asroc Chen
Chien-Ping Kao
Pei Tsao
Allen Cheng
Ji Li
AJ Yang
Jason Chou
Ann Liu
Yuan Zhang
Edmond Choy
Terry Little
Jessica Zheng
Bob Hall
Steve Sedio
Andy Yao

Foxlink/Cheng Uei Precision Industry Co., Ltd.
Robert Chen
Armando Lee
Steve Tsai
Sunny Chou
Dennis Lee
Wen Yang
Carrie Chuang
Justin Lin
Wiley Yang
Wen-Chuan Hsu
Tse Wu Ting
Junjie Yu
Alex Hsue

Google
Joshua Boillard
Nithya Jagannathan
David Schneider
Jim Guerin
Lawrence Lam
Ken Wu
Jeffrey Hayashida
Ingrid Lin
Mark Hayter
Adam Rodriguez

Granite River Labs
Mike Engbretson
Johnson Tan
Hewlett Packard (USB 3.0 Promoter company)
Alan Berkema
Michael Krause
Linden McClure
Robin Castell
Jim Mann
Mike Pescetto
<table>
<thead>
<tr>
<th>Company</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirose Electric Co., Ltd.</td>
<td>Jeremy Buan, William MacKillop</td>
</tr>
<tr>
<td>Intel Corporation</td>
<td>Dave Ackelson, James Jaussi, Chee Lim Nge</td>
</tr>
<tr>
<td>(USB 3.0 Promoter company)</td>
<td>Mike Bell, Luke Johnson, Sridharan Ranganathan</td>
</tr>
<tr>
<td></td>
<td>Kuan-Yu Chen, Jerzy Kolinski, Brad Saunders</td>
</tr>
<tr>
<td></td>
<td>Hengju Cheng, Christine Krause, Amit Srivastava</td>
</tr>
<tr>
<td></td>
<td>Bob Dunstan, Yun Ling, Ron Swartz</td>
</tr>
<tr>
<td></td>
<td>Paul Durley, Xiang Li, Karthi Vadivelu</td>
</tr>
<tr>
<td></td>
<td>Howard Heck, Guobin Liu, Rafal Wielicki</td>
</tr>
<tr>
<td></td>
<td>Hao-Han Hsu, Steve McGowan</td>
</tr>
<tr>
<td></td>
<td>Abdul (Rahman) Ismail</td>
</tr>
<tr>
<td>JAE (Japan Aviation Electronics Industry Ltd.)</td>
<td>Kenji Hagiwara, Kimiaki Saito, Jussi Takegawa</td>
</tr>
<tr>
<td></td>
<td>Masaki Kimura, Yuichi Saito, Tomohiko Tamada</td>
</tr>
<tr>
<td></td>
<td>Toshio Masumoto, Mark Saubert, Kentaro Toda</td>
</tr>
<tr>
<td></td>
<td>Joe Motojima, Toshio Shimoyama, Kouhei Ueda</td>
</tr>
<tr>
<td></td>
<td>Ron Muir, Tatsuya Shiota, Takakazu Usami</td>
</tr>
<tr>
<td></td>
<td>Tadashi Okubo, Atsuo Tago, Masahide Watanabe</td>
</tr>
<tr>
<td></td>
<td>Kazuhiro Saito, Masaaki Takaku, Youhei Yokoyama</td>
</tr>
<tr>
<td>JPC/Main Super Inc.</td>
<td>Sam Tseng, Ray Yang</td>
</tr>
<tr>
<td>LeCroy Corporation</td>
<td>Daniel H. Jacobs</td>
</tr>
<tr>
<td>Lenovo</td>
<td>Rob Bowser, Wei Lie, Howard Locker</td>
</tr>
<tr>
<td></td>
<td>Tomoki Harada</td>
</tr>
<tr>
<td>Lotes Co., Ltd.</td>
<td>Ariel Delos Reyes, Regina Liu-Hwang, JinYi Tu</td>
</tr>
<tr>
<td></td>
<td>Ernest Han, Max Lo, Jason Yang</td>
</tr>
<tr>
<td></td>
<td>Mark Ho, Charles Kaun</td>
</tr>
<tr>
<td>LSI Corporation</td>
<td>Dave Thompson</td>
</tr>
<tr>
<td>Luxshare-ICT</td>
<td>Josue Castillo, CY Hsu, Stone Lin</td>
</tr>
<tr>
<td></td>
<td>Daniel Chen, Alan Kinningham, Pat Young</td>
</tr>
<tr>
<td></td>
<td>Lisen Chen, John Lin</td>
</tr>
<tr>
<td>MegaChips Corporation</td>
<td>Alan Kobayashi</td>
</tr>
<tr>
<td>Microchip (SMSC)</td>
<td>Josh Averyt, Donald Perkins, Mohammed Rahman</td>
</tr>
<tr>
<td></td>
<td>Mark Bohm</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>Randy Aull, Robert Hollyer, Ivan McCracken</td>
</tr>
<tr>
<td>(USB 3.0 Promoter company)</td>
<td>Fred Bhesania, Kai Inha, Toby Nixon</td>
</tr>
<tr>
<td></td>
<td>Anthony Chen, Jayson Kastens, Gene Obie</td>
</tr>
<tr>
<td></td>
<td>Marty Evans, Andrea Keating, Srivatsan Ravindran</td>
</tr>
<tr>
<td></td>
<td>Vivek Gupta, Eric Lee, David Voth</td>
</tr>
<tr>
<td></td>
<td>Robbie Harris</td>
</tr>
<tr>
<td>MQP Electronics Ltd.</td>
<td>Sten Carlsen, Pat Crowe</td>
</tr>
<tr>
<td>Nokia Corporation</td>
<td>Daniel Gratiot, Samuli Makinen, Timo Toivola</td>
</tr>
<tr>
<td></td>
<td>Pekka Leinonen, Pekka Talmola, Panu Ylihaavisto</td>
</tr>
<tr>
<td>NXP Semiconductors</td>
<td>Vijendra Kuroodi, Guru Prasad</td>
</tr>
<tr>
<td>(USB 3.0 Promoter company)</td>
<td>Nobuo Furuya, Philip Leung, Kiichi Muto</td>
</tr>
</tbody>
</table>

This is a preview - click here to buy the full publication.
Pre-Release Draft Industry Reviewing Companies That Provided Feedback

Aces
Allion Labs, Inc.
Analogix Semiconductor
BizLink International Corp.
Corning Optical Communications LLC
Cypress Semiconductor
Etron Technology Inc.
Fairchild Semiconductor
Fujitsu Ltd.
Industrial Technology Research Institute (ITRI)

Johnson Components & Equipment Co., Ltd.
Joinson Electronics Mfg. Co. Ltd.
JST Mfg. Co., Ltd.
Korea Electric Terminal
Marvell Semiconductor
Motorola Mobility LLC
NEC
Newnex Technology Corp.
NXP Semiconductors
PalCONN/PalNova (Palpilot International Corp.)

Parade Technology
Pericom
Qualcomm
Semtech Corporation
Shenzhen Deren Electronic Co., Ltd.
Silicon Image
Simula Technology Corp.
SMK Corporation
Sony Corporation
Sumitomo Electric Industries
Toshiba Corporation

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>August 11, 2014</td>
<td>Initial Release</td>
</tr>
<tr>
<td>1.1</td>
<td>April 3, 2015</td>
<td>Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
</tbody>
</table>
1 Introduction

With the continued success of the USB interface, there exists a need to adapt USB technology to serve newer computing platforms and devices as they trend toward smaller, thinner and lighter form-factors. Many of these newer platforms and devices are reaching a point where existing USB receptacles and plugs are inhibiting innovation, especially given the relatively large size and internal volume constraints of the Standard-A and Standard-B versions of USB connectors. Additionally, as platform usage models have evolved, usability and robustness requirements have advanced and the existing set of USB connectors were not originally designed for some of these newer requirements. This specification is to establish a new USB connector ecosystem that addresses the evolving needs of platforms and devices while retaining all of the functional benefits of USB that form the basis for this most popular of computing device interconnects.

1.1 Purpose

This specification defines the USB Type-C™ receptacles, plug and cables.

The USB Type-C Cable and Connector Specification is guided by the following principles:

- Enable new and exciting host and device form-factors where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation

The USB Type-C Cable and Connector Specification defines a new receptacle, plug, cable and detection mechanisms that are compatible with existing USB interface electrical and functional specifications. This specification covers the following aspects that are needed to produce and use this new USB cable/connector solution in newer platforms and devices, and that interoperate with existing platforms and devices:

- USB Type-C receptacles, including electro-mechanical definition and performance requirements
- USB Type-C plugs and cable assemblies, including electro-mechanical definition and performance requirements
- USB Type-C to legacy cable assemblies and adapters
- USB Type-C-based device detection and interface configuration, including support for legacy connections
- USB Power Delivery optimized for the USB Type-C connector

The USB Type-C Cable and Connector Specification defines a standardized mechanism that supports Alternate Modes, such as repurposing the connector for docking-specific applications.

1.2 Scope

This specification is intended as a supplement to the existing USB 2.0, USB 3.1 and USB Power Delivery specifications. It addresses only the elements required to implement and support the USB Type-C receptacles, plugs and cables.

Normative information is provided to allow interoperability of components designed to this specification. Informative information, when provided, may illustrate possible design implementations.