Waveguide type dielectric resonators – Part 1-5: General information and test conditions – Measurement method of conductivity at interface between conductor layer and dielectric substrate at microwave frequency
CONTENTS

FOREWORD... 4
INTRODUCTION... 6
1 Scope... 7
2 Normative references ... 8
3 Measurement and related parameters .. 8
4 Calculation equations for R_i and σ_i ... 9
5 Preparation of specimen... 13
6 Measurement equipment and apparatus ... 13
 6.1 Measurement equipment ... 13
 6.2 Measurement apparatus .. 13
7 Measurement procedure... 14
 7.1 Set up of measurement equipment and apparatus ... 14
 7.2 Measurement of reference level .. 14
 7.3 Measurement procedure of Q_0 ... 14
 7.4 Determination of σ_i and measurement uncertainty.. 16
8 Example of measurement result ... 16
Annex A (informative) Derivation of equation (4) for R_i ... 18
Annex B (informative) Calculation uncertainty of parameters in Figure 3 19
Bibliography.. 20

Figure 1 – Surface resistance sR, surface conductivity $s\sigma$, interface resistance iR, and interface conductivity $i\sigma$. ... 7
Figure 2 – The TE$_{010}$ mode dielectric rod resonator to measure σ_i, 9
Figure 3 – Parameters chart of f_0, g, P_{rod} and P_{sub} for reference sapphire rod. Calculation conditions: $\varepsilon'_rod = 9.4$, $d = 10.00$ mm and $h = 5.00$ mm .. 11
Figure 4 – Parameters chart of f_0, g, P_{rod} and P_{sub} for reference (Zr,Sn)TiO$_4$ rod. Calculation conditions: $\varepsilon'_rod = 39$, $d = 14.00$ mm and $h = 6.46$ mm... 12
Figure 5 – Schematic diagram of measurement equipments.. 13
Figure 6 – Schematic diagram of measurement apparatus for σ_i .. 14
Figure 7 – Frequency response for reference sapphire rod with two dielectric substrates as shown in figure 2 ... 15
Figure 8 – Resonance frequency f_0, insertion attenuation lA_0 and half-power band width f_{BW} ... 16

Table 1 – Specifications of reference rods ... 10
Table 2 – ε'_rod and $\tan\delta_{rod}$ of reference rods measured by the method (IEC 61338-1-3).. 16
Table 3 – ε'_sub and $\tan\delta_{sub}$ of a LTCC test substrate measured by the method (IEC 61338-1-4).. 17
Table 4 – Measurement results of σ_i and σ_{ri} of a copper layer in LTCC substrate with $\varepsilon'_{sub} = 4.76$, $d' = 45$ mm and $t = 0.415$ mm. ... 17

Table B.1 – Parameters obtained by FEM and rigorous analysis (IEC61338-1-3) for the TE_{011} mode resonator with $\varepsilon'_{rod} = 9.4$, $d = 10.0$ mm, and $h = 5.0$ mm. ... 19

Table B.2 – Calculated parameters f_0, g, P_{rod}, P_{sub}, R_i, σ_i and σ_{ri} for the $\text{TE}_{01\delta}$ mode resonator with $\varepsilon'_{rod} = 9.4$ and 9.3, with the test condition of $\varepsilon'_{sub} = 6.0$, $\tan \delta_{sub} = 0.001$, $t = 0.5$ mm, and $Q_u = 6000.$... 19
INTERNATIONAL ELECTROTECHNICAL COMMISSION

WAVEGUIDE TYPE DIELECTRIC RESONATORS –

Part 1-5: General information and test conditions – Measurement method of conductivity at interface between conductor layer and dielectric substrate at microwave frequency

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public.

IEC/PAS 61338-1-5 has been processed by IEC technical committee 49: Piezoelectric and dielectric devices for frequency control and selection.

The text of this PAS is based on the following document:

Draft PAS

This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document

Report on voting

49/873/PAS

49/902/RVD

Following publication of this PAS, which is a pre-standard publication, the technical committee or subcommittee concerned may transform it into an International Standard.

This PAS shall remain valid for an initial maximum period of 3 years starting from the publication date. The validity may be extended for a single period up to a maximum of 3 years,
at the end of which it shall be published as another type of normative document, or shall be withdrawn.

A list of all parts of IEC 61338 series under the general title *Waveguide type dielectric resonators* can be found on the IEC website.

IEC 61338 consists of the following parts, under the general title *Waveguide type dielectric resonators*:

Part 1: Generic specification
Part 1-3: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency
Part 1-4: General information and test conditions - Measurement method of complex relative permittivity for dielectric resonator materials at millimeter-wave frequency
Part 2: Guidelines for oscillator and filter applications
Part 4: Sectional specification
Part 4-1: Blank detail specification
INTRODUCTION

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this PAS may involve the use of a patent concerning:

“Measurement method of conductivity at interface of conductor layer”
“Measurement method of conductivity of conductor layer”

IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the IEC that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with IEC. Information may be obtained from:

KYOCERA Corporation
6 Takeda Tobadono-cho, Fushimiku, Kyoto 612-5801, Japan

Attention is drawn to the possibility that some of the elements of this PAS may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://www.iec.ch/tctools/patent_decl.htm) maintain online data bases of patents relevant to their standards. Users are encouraged to consult the data bases for the most up to date information concerning patents.
WAVEGUIDE TYPE DIELECTRIC RESONATORS –

Part 1-5: General information and test conditions – Measurement method of conductivity at interface between conductor layer and dielectric substrate at microwave frequency

1 Scope

Microwave circuits are popularly formed on multi-layered organic or non-organic substrates. In the microwave circuits, the attenuation of planar transmission lines such as striplines, microstrip lines, and coplanar lines are determined by their conductor loss, dielectric loss and radiation loss. Among them, the conductor loss is a major factor in the attenuation of the planar transmission lines. A new measurement method is needed to evaluate the conductivity of transmission line on or in the substrates such as the organic, ceramic and LTCC (low temperature co-fired ceramics) substrates.

The IEC 61338-1-3 described the measurement method for the surface resistance sR and effective conductivity σ on the surface of the conductor. The term σ is designated as $s\sigma$ in this PAS, and is called surface conductivity (Figure 1). This PAS describes a measurement method for resistance and effective conductivity at the interface between conductor layer and dielectric substrate designated as iR and $i\sigma$, respectively, and are called interface resistance and interface conductivity.

For the transmission line in the substrates, the electric current is concentrated at the interface between conductor layer and dielectric substrate, because the skin depth δ in the conductor is the order of μm in thickness at the microwave frequencies. In microstrip lines, the current is concentrated at the interface, rather than at the open face of the conductor. Furthermore, in copper-clad organic substrates, the interface side of the copper foil has rugged structure to hold the strong adhesive strength. In LTCC substrates, the interface between the conductor and ceramics has a rough structure, depending on the co-firing process and the material compositions. The interface conditions increase the conductor loss. Therefore, the evaluation of iR and $i\sigma$ is important to design microwave circuit and to improve the conductor fabrication process.

This measurement method has the following characteristics:

- the interface resistance iR is obtained by measuring the resonant frequency f_0 and unloaded quality factor Q_u of a TE$_{01\delta}$ mode dielectric rod resonator shown in Figure 2;
– the interface conductivity \(\sigma_i \) and the relative interface conductivity \(\sigma_{ri} = \sigma_i / \sigma_0 \) are calculated from the measured \(R_i \) value, where \(\sigma_0 = 5.8 \times 10^7 \) S/m is the conductivity of standard copper;
– the measurement uncertainty of \(\sigma_{ri} \) (\(\Delta \sigma_{ri} \)) is less than 5%.

2 Normative references

The following referenced documents are indispensable for the application of this PAS. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61338-1-3: Waveguide type dielectric resonators - Part 1-3: General information and test conditions – Measurement method of complex relative permittivity for dielectric resonator materials at microwave frequency

IEC 61338-1-4: Waveguide type dielectric resonators - Part 1-4: General information and test conditions – Measurement method of complex relative permittivity for dielectric resonator materials at millimetre-wave frequency