Performance guide
Manual for single- and double-sided flexible printed wiring boards

IEC/PAS 62123
Edition 1.0
1999-10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PUBLICLY AVAILABLE SPECIFICATION

IEC

INTERNATIONAL ELECTROTECHNICAL COMMISSION

IPC

Reference number
IEC/PAS 62123

IPC/JPCA-6202
February 1999
A joint standard developed by IPC and JPCA
Withdrawn
INTERNATIONAL ELECTROTECHNICAL COMMISSION

PERFORMANCE GUIDE MANUAL FOR SINGLE- AND DOUBLE-SIDED FLEXIBLE PRINTED WIRING BOARDS

FOREWORD

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public and established in an organization operating under given procedures.

IEC-PAS 62123 was submitted by the IPC (The Institute for Interconnecting and Packaging Electronic Circuits) and has been processed by IEC technical committee 52: Printed circuits.

The text of this PAS is based on the following document:

This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document:

<table>
<thead>
<tr>
<th>Draft PAS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>52/809/PAS</td>
<td>52/830/RVD</td>
</tr>
</tbody>
</table>

Following publication of this PAS, the technical committee or subcommittee concerned will investigate the possibility of transforming the PAS into an International Standard.

An IEC-PAS licence of copyright and assignment of copyright has been signed by the IEC and IPC and is recorded at the Central Office.

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this PAS may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.
The Principles of Standardization

In May 1995 the IPC’s Technical Activities Executive Committee adopted Principles of Standardization as a guiding principle of IPC’s standardization efforts.

Standards Should:
• Show relationship to DFM & DFE
• Minimize time to market
• Contain simple (simplified) language
• Just include spec information
• Focus on end product performance
• Include a feedback system on use and problems for future improvement

Standards Should Not:
• Inhibit innovation
• Increase time-to-market
• Keep people out
• Increase cycle time
• Tell you how to make something
• Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

Why is there a charge for this standard?

Your purchase of this document contributes to the ongoing development of new and updated industry standards. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC’s volunteers in the standards development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC’s staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

IPC’s membership dues have been kept low in order to allow as many companies as possible to participate. Therefore, the standards revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/790-5372.

Thank you for your continued support.
Performance Guide
Manual for Single- and Double-Sided Flexible Printed Wiring Boards

Developed by the Flexible Circuits Acceptability Subcommittee (D-14) of the Flexible Circuits Committee (D-10) of IPC and the Flexible Printed Circuits Committee of the Japan Printed Circuit Association (JPCA)

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Acknowledgment

Any Standard involving a complex technology draws material from a vast number of sources. While the principal members of the Flexible Circuits Acceptability Subcommittee (D-14) of the Flexible Circuits Committee (D-10) and the Flexible Circuits Committee of the Japan Printed Circuit Association (JPCA) are shown below, it is not possible to include all of those who assisted in the evolution of this standard. To each of them, the members of the IPC extend their gratitude.

<table>
<thead>
<tr>
<th>IPC Flexible Circuits Committee</th>
<th>IPC Flexible Circuits Acceptability Subcommittee</th>
<th>Technical Liaison of the IPC Board of Directors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Chairman</td>
<td>Stan Plzak</td>
</tr>
<tr>
<td>Tom Gardeski</td>
<td>Bill Jacobi</td>
<td>Pensar Corp.</td>
</tr>
<tr>
<td>DuPont High Performance Films</td>
<td>William Jacobi & Assoc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JPCA Flexible Printed Circuits Committee</th>
<th>JPCA Flexible Printed Circuits Committee</th>
<th>JPCA Flexible Printed Circuits Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Secretary</td>
<td>Chairman</td>
</tr>
<tr>
<td>Yukihiko Abe</td>
<td>Isao Shibata</td>
<td>Yukihiko Abe</td>
</tr>
<tr>
<td>Nippon Mektron, Ltd.</td>
<td>Sumitomo Electric~ Industries, Ltd.</td>
<td>Nippon Mektron, Ltd.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JPCA Flexible Printed Circuits Committee</th>
<th>JPCA Flexible Printed Circuits Committee</th>
<th>JPCA Flexible Printed Circuits Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeo Kuroki, Fujikura, Ltd.</td>
<td>Takeo Tanaka, DuPont-Toray Co., Ltd.</td>
<td>Toshinori Mizuguchi, Kaneka Corporation</td>
</tr>
<tr>
<td>Toru Koizumi, Fujikura, Ltd.</td>
<td>Kazumi Nagar, Toray Industries, Inc.</td>
<td>Yutaka Mohri, Ube Industries, Ltd.</td>
</tr>
<tr>
<td>Mario Sakashita, Nikkan Industries Co., Ltd.</td>
<td></td>
<td>Yoshiyuki Yagura, Nitto Denko Corp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPC Flexible Circuits Acceptability Subcommittee</th>
<th>IPC Flexible Circuits Acceptability Subcommittee</th>
<th>IPC Flexible Circuits Acceptability Subcommittee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill Jacobi, William Jacobi & Assoc.</td>
<td>Michael Musich, Underwriters Laboratories, Inc.</td>
<td>Clark Webster, Precision Diversified Industries, Inc.</td>
</tr>
<tr>
<td>Thomas Gardeski, DuPont High Performance Films</td>
<td>Russ Griffith, Tyco Printed Circuit Group</td>
<td>Roy Keen, Rockwell Collins</td>
</tr>
<tr>
<td>Duane Mahnke, Rogers Corp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

1 SCOPE

2 REFERENCED DOCUMENTS

 2.1 Japan Printed Circuits Association

 2.2 International Electrotechnical Commission

 2.3 IPC

3 DEFINITION OF TERMS

4 TEST METHODS

5 PERFORMANCE LEVELS

6 BASE MATERIALS

7 VISUAL INSPECTION

 7.1 Test Environment

 7.2 Test Specimens

 7.3 Tools for Testing

 7.4 Preparation of Limit Samples

 7.5 Description of Inspections

 7.5.1 Visual Inspection of Conductors

 7.5.2 Visual Inspection of Base Film

 7.5.3 Visual Inspection of Coverlay and Covercoat

 7.5.4 Visual Inspection of Plating

 7.5.5 Visual Inspection of Edges of Outline and Holes

 7.5.6 Visual Imperfections Related to Stiffener Bonding

 7.5.7 Other Visual Inspection

8 DIMENSIONAL INSPECTIONS

 8.1 Measurement of Dimensions

 8.2 External dimensions

 8.3 Thickness

 8.4 Holes

 8.4.1 Component Holes

 8.4.2 Vias

 8.4.3 Mounting Holes

 8.5 Conductor Widths

 8.6 Clearances Between Conductors

 8.7 Distance Between Hole Centers

 8.8 Minimum Distance Between Board Edges and Conductors

 8.9 Positional Accuracy

 8.9.1 Positional Accuracy of Holes

 8.9.2 Registration of Hole to Land

 8.9.3 Registration of Coverlay (or Covercoat) to Land

 8.10 Registration of Pressure Sensitive or Heat Activated Adhesives (Including Adhesive Squeeze-Out) to Flexible Printed Board and Stiffener

 8.11 Plating Thickness of Copper Plated Through Holes

9 TESTING OF ELECTRICAL PERFORMANCE

10 TESTING OF MECHANICAL PERFORMANCE

11 ENVIRONMENTAL PERFORMANCE

12 MIGRATION

13 CHEMICAL RESISTANCE

14 CLEANLINESS

15 FLAME RESISTANCE

16 MARKING, PACKAGING, AND STORAGE

 16.1 Marking on Products

 16.2 Marking on Package

 16.3 Packaging and Storage

 16.3.1 Packaging

 16.3.2 Storage

 16.3.3 Handling

Appendix I

Appendix II

Appendix III

Figures

- Figure 1: Nicks and Pinholes in Conductor

- Figure 2: Reduced Area on Land

- Figure 3: Circumferential Void at the Component Hole Corner

- Figure 4: Extraneous Copper Between Conductors/Spurs and Nodules of Conductors Corner

- Figure 5: Extraneous Copper and Spurs and Nodules in Open Area and Nodules of Conductors Corner

- Figure 6: Etched Concave on Conductor Surface and Nodules of Conductors Corner

- Figure 7: Conductor Delamination

- Figure 8: Scratches on Conductor

- Figure 9: Dents
Table 1 Allowable Nicks and Pinholes.............................. 2
Table 2 Allowable Extraneous Copper and Spurs and Nodules Between Conductors.......................... 3
Table 3 Allowable Etched Concave on Conductor Surface .. 4
Table 4 Allowable Conductor Delamination 4
Table 5 Allowable Scratches on Conductor 4
Table 6 Allowable Dents.. 5
Table 7 Discoloration... 5
Table 8 Dents .. 5
Table 9 Allowable Scratches on Base Film.......................... 5
Table 10 Dents on Coverlay and Covercoat.......................... 5
Table 11 Requirements for Scratches on Coverlayer and Covercoat ... 5
Table 12 Allowable Voids.. 6
Table 13 Allowable Non-Conductive Foreign Materials (mm) .. 6
Table 14 Allowable Squeeze-Out of Coverlay Adhesive and Ooze-out of Covercoat 7
Table 15 Minimum Solderable Annular Ring on Land Area.. 8
Table 16 Gold Plating ... 8
Table 17 Requirements for Metal Penetration Between Conductor and Coverlay 9
Table 18 Requirements for Metal Penetration Between Conductor and Base Film 9
Table 19 Gold Plating ... 9
Table 20 Allowable Plating Voids ... 9
Table 21 Cracks .. 11
Table 22 Thermosetting Adhesives on Surface .. 12
Table 23 Flux Residue on Surface .. 12
Table 24 Residue of Metal Powders (Solder, Aluminum, Copper, Etc.) 12
Table 25 Residue of Adhesive .. 12
Table 26 Tolerance of External Dimension 13
Table 27 Requirements for Holes ... 13
Table 28 Requirements for Vias... 13
Table 29 Conductor Widths and Tolerances (mm) .. 13
Table 30 Conductor Clearances and Tolerances (mm) .. 13
Table 31 Tolerance of Distance Between Hole Centers .. 13
Table 32 Minimum Distance between Board Edges and Conductors 13
Table 33 Allowable Misregistration of Outlines 14
Table 34 Registration of Punched Outline to Conductor Patterns .. 14
Table 35 Electrical Properties of Flexible Printed Boards .. 15
Table 36 Mechanical Properties of Flexible Printed Boards .. 15
Table 37 Environmental Tests and Requirements .. 16
Table 38 Requirements for Packaging .. 16

1 SCOPE
This standard covers the requirements and considerations for single- and double-sided flexible printed wiring boards (hereinafter called “flexible printed boards” or FPC).

In this document, a FPC means a single- or double-sided FPC, using a film of polyester or polyimide laminated with copper foil(s) on one or both sides (including types with no adhesive layer), and manufactured by the subtractive method (excluding the build-up methods for the manufacturing process).

2 REFERENCED DOCUMENTS
The referenced documents for this standard are as stated in 2.1 through 2.3.

2.1 Japan Printed Circuits Association

- JIS C 5017 (1994) Flexible Printed Wiring Boards - Single-Sided and Double-Sided
- JIS C 5603 (1993) Terms and Definitions for Printed Circuits
- JIS C 6472 (1995) Copper-Clad Laminates for Flexible Printed Wiring Boards (Polyester Film, Polyimide Film)
- JIS C 6512 (1992) Electrolytic Copper Foil for Printed Wiring Boards
- JIS C 6513 (1996) Rolled Copper Foil for Printed Wiring Boards
- JPCA-FC03 (1992) Specification for External Appearance of Flexible Printed Wiring Boards

2.2 International Electrotechnical Commission

2.3 IPC

- IPC-A-600 Acceptability of Printed Boards
- 2.4.13 Solder Float Resistance Flexible Printed Wiring Materials

2.4.13 Solder Float Resistance Flexible Printed Wiring Materials

3 DEFINITION OF TERMS
The definition of terms used in this document is in conformance with JIS C 5603, JIS C 5017, JIS C 5016, and JPCA-FC03.

4 TEST METHODS
The test methods for the properties specified in this document are, in principle, in conformance with JIS C 5016, provided:

1. Test methods requiring complicated referencing procedures are reproduced in this document.
2. Tests on through connection apply to double-sided FPCs only.
3. For stiffeners affixed to FPCs, external appearance is the only requirement specified in this document.

5 PERFORMANCE LEVELS
The FPCs are classified into three standard levels and one special level regarding their performance for each requirement. These are defined as follows:

- Level 1 – FPCs requiring “ordinary” performance levels
- Level 2 – FPCs requiring “high” performance levels
- Level 3 – FPCs requiring “special” performance levels
- Level 4 – FPCs requiring “exceptional” performance levels

These IEC documents are, however, being reviewed for substantial revision at the time of enactment of this document.

Note:

1. JPCA, Kairo Kaikan 2F, 12-2, Nishiogikita 3-Chome, Suginami-Ku, Tokyo, 167, Japan, +81-3-5310-2020, www.jpa.org
2. ANSI, 11 W. 42nd St., New York, NY 10036, 212-642-4980, www.ansi.org