

IEC 60034-27-2

Edition 1.0 2023-12

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Rotating electrical machines – Part 27-2: On-line partial discharge measurements on the stator winding insulation

Machines électriques tournantes – Partie 27-2: Mesurages en fonctionnement des décharges partielles effectués sur le système d'isolation

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.160.01

ISBN 978-2-8322-7873-4

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale
 – 2 –

IEC 60034-27-2:2023 © IEC 2023

CONTENTS

F	FOREWORD			
IN	INTRODUCTION			
1	Scop	e	. 10	
2	Norm	ative references	. 10	
3	Term	s and definitions	.11	
4	Caus	e and effects of on-line PD	.13	
5	Noise	and disturbances	14	
U	5 1		. 1- 1	
	5.2	Noise and disturbance sources	. 14 1/	
6	0.2 Meas	uring techniques and instruments	15	
U	6 1	General	15	
	6.2	Pulse propagation in windings	16	
	6.3	Signal transfer characteristics	16	
	6.4	PD sensors	19	
	6.4.1	General	. 19	
	6.4.2	Design of PD sensors	.19	
	6.4.3	Reliability of PD sensors	.20	
	6.5	PD measuring device	.20	
	6.6	PD measuring parameters	.21	
	6.6.1	General	.21	
	6.6.2	PD magnitude	.21	
	6.6.3	Additional PD parameters	.21	
7	Insta	llation of measuring systems	.21	
	7.1	General	.21	
	7.2	Installation of PD sensors	.21	
	7.3	Outside access point and cabling	.22	
	7.4	Installation of the PD measuring device	.23	
	7.5	Installation of operational data acquisition systems	.23	
8	Norm	alization of measurements	.24	
	8.1	General	.24	
	8.2	Normalization for low frequency systems	.24	
	8.2.1	General	.24	
	8.2.2	Normalization procedure	.24	
	8.3	Normalization / sensitivity check for high and very high frequency systems	.25	
	8.3.1	Specification for the electronic pulse generation	.25	
	8.3.2	Configuration of the machine	.27	
~	8.3.3		.27	
9	Meas	suring procedures	.21	
	9.1	General	.27	
	9.2	Machine operating parameters	.28	
	9.3	Baseline measurement.	.28	
	9.3.1	General	.28	
	9.3.2	Comprenensive test procedure	.∠ŏ 20	
	9.4 0.5	Continuous moosuremente	.29 20	
10	9.0 Views	ounanious measurements	. 30 20	
I C	, visua	สา∠ฉนุงท งา การสงนารการการการการการการการการการการการการกา	. 50	

- 3 -	
-------	--

10.1	General	30
10.2	Visualization of trending parameters	31
10.3	Visualization of PD patterns	31
11 Inter	pretation of on-line measurements	34
11.1	General	34
11.2	Evaluation of basic trend parameters	34
11.3	Evaluation of PD patterns	35
11.3	1 General	35
11.3	2 PD pattern interpretation	36
11.4	Effect of machine operating factors	36
11.4	1 General	36
11.4	2 Machine operating factors	36
11.4	3 Steady state load conditions	37
11.4	4 Transient load conditions	37
12 Test	report	38
Annex A	(informative) Nature of PD in rotating electrical machines	41
A.1	Types of PD in rotating electrical machines	41
A.1.1	General	41
A.1.2	2 Internal discharges	41
A.1.3	B Slot discharges	42
A.1.4	Discharges in the end-winding	42
A.1.5	5 Conductive particles	42
A.2	Arcing and sparking	42
A.2.1	General	42
A.2.2	2 Arcing at broken conductors	43
A.2.3	3 Vibration sparking	43
Annex B	(informative) Disturbance rejection and signal separation	44
B.1	General	44
B.2	Frequency domain separation	44
B.3	Time domain separation	44
B.4	Combination of frequency and time domain separation	45
B.5	Synchronous multi-channel measurement	46
B.6	Signal gating	47
B.7	Pattern recognition	48
Annex C	(informative) Examples of Phase Resolved Partial Discharge (PRPD) pattern	50
C.1	General	50
C.2	Principal appearance of phase resolved PD patterns	50
C.3	Example of typical PRPD patterns recorded in laboratory	53
C.3.1	I General	53
C.3.2	2 Internal discharges	53
C.3.3	3 Slot partial discharges	55
C.3.4	Discharges in the end-winding	56
C.4	Example of typical PRPD patterns recorded on-line	59
C.4.7	I General	59
C.4.2	2 Internal discharges	59
C.4.3	3 Slot partial discharges	61
C.4.4	Discharges in the end-winding	62
C.5	Other complex examples	65

	normative) Specifications for conventional PD coupling capacitors	.67
D.1	General	. 67
D.2	Datasheet information	. 67
D.3	Type tests	. 67
D.3.1	General	. 67
D.3.2	Voltage endurance	.67
D.3.3	Tracking resistance	.68
D.3.4	Lightning impulse test	.68
D.3.5	Dissipation factor	. 68
D.3.6	Capacitance stability in temperature	.68
D.3.7		.68
D.3.8	Frequency response	.00
D.4	Pouting tosts	.00
		.09
D.5.1	General	.09
D.3.2	Dielectric withstand test at power frequency	.09
D.3.3	Consistence and dissinction faster	.09
D.3.4		.09
Figure 1 -	Generic overview of PD measuring system and its subsystems	. 15
Figure 2 -	Cascade of frequency response channels	. 16
Figure 3 – machine t	Idealized frequency response of a PD pulse at the PD source and at the erminals; frequency response of different PD measuring systems: a) low range, b) high frequency range, c) your high frequency range	17
Figure 4	Measuring object during normalization, neutral point in same condition as	/
during ope	ration	.25
Figure 5 -	Arrangement for sensitivity check	
Figure 6 -		.26
conditions	Recommended test procedure with consecutive load and temperature	.26 .29
conditions Figure 7 – interval us	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements	.26 .29 .31
conditions Figure 7 – interval us	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements	.26 .29 .31 .32
conditions Figure 7 – interval us Figure 8 – Figure 9 –	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient	.26 .29 .31 .32
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C	.26 .29 .31 .32 .33
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b Figure B.1	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival	.26 .29 .31 .32 .33 .45
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b Figure B.1 Figure B.2 frequency	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map).	.26 .29 .31 .32 .33 .45 .46
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing be Figure B.1 Figure B.2 frequency Figure B.3	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map). – 3 phase star diagram of multi-channel measurement	.26 .29 .31 .32 .33 .45 .46 .47
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing be Figure B.1 Figure B.2 frequency Figure B.3 Figure C.2	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map) – 3 phase star diagram of multi-channel measurement – Phase-earth driven PD – PD predominantly centered on 45° and 225° crossing of phase-to-earth voltage	.26 .29 .31 .32 .33 .45 .46 .47 .51
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b Figure B.1 Figure B.2 frequency Figure B.3 Figure C.2 after zero Figure C.2 on 45° and	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map) – 3 phase star diagram of multi-channel measurement – Phase-earth driven PD – PD predominantly centered on 45° and 225° crossing of phase-to-earth voltage – PD events and other sources, e.g. non-PD sources, that are not centered 225° after zero crossing of phase-to-earth voltage	.26 .29 .31 .32 .33 .45 .46 .47 .51
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing be Figure B.1 Figure B.2 frequency Figure B.3 Figure C.2 after zero Figure C.2 on 45° and Figure C.3 laboratory	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map) – 3 phase star diagram of multi-channel measurement – Phase-earth driven PD – PD predominantly centered on 45° and 225° crossing of phase-to-earth voltage – PD events and other sources, e.g. non-PD sources, that are not centered d 225° after zero crossing of phase-to-earth voltage – Example of internal void discharges PRPD pattern, recorded during simulation	.26 .29 .31 .32 .33 .45 .46 .47 .51 .52
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b Figure B.1 Figure B.2 frequency Figure B.3 Figure C.2 on 45° and Figure C.3 laboratory	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements Examples of a PRPD pattern Phase to phase PD PRPD plots where the PD is caused by insufficient etween the endwindings of phases B and C – Example for time domain separation by time of pulse arrival – Combined time and frequency domain disturbance separation (time map) – 3 phase star diagram of multi-channel measurement – Phase-earth driven PD – PD predominantly centered on 45° and 225° crossing of phase-to-earth voltage – PD events and other sources, e.g. non-PD sources, that are not centered d 225° after zero crossing of phase-to-earth voltage – Example of internal void discharges PRPD pattern, recorded during simulation	.26 .29 .31 .32 .33 .45 .46 .47 .51 .52 .54
conditions Figure 7 – interval us Figure 8 – Figure 9 – spacing b Figure B.1 Figure B.2 frequency Figure B.3 Figure C.2 after zero Figure C.2 on 45° and Figure C.2 laboratory Figure C.4	Recommended test procedure with consecutive load and temperature Example of the trend in peak PD activity in three phases over an 18-year ing periodic measurements	.26 .29 .31 .32 .33 .45 .46 .47 .51 .52 .54 .54

Figure C.6 – Slot partial discharges activity and corresponding PRPD pattern, recorded	56
Figure C.7 – Corona activity at the S/C and stress grading coating, and corresponding	50
PRPD pattern, recorded during laboratory simulation	56
Figure C.8 – Surface tracking activity along the end arm and corresponding PRPD pattern, recorded during laboratory simulation	57
Figure C.9 – Surface discharges at the junction between stress control and conductive slot coatings:a) Insulating tape simulating a bad electrical connection between conductive slot coating and stress control coating and the corresponding PRPD;b) and c) the connection is completely interrupted	58
Figure C.10 – Gap type discharge activities and corresponding PRPD patterns, recorded during laboratory simulations	59
Figure C.11 – Example of internal void discharges PRPD pattern, recorded on-line	60
Figure C.12 – Example of internal delamination PRPD pattern, recorded on-line	60
Figure C.13 – Example of delamination between conductor and insulation PRPD pattern, recorded on-line	61
Figure C.14 – PD pattern of phase 2 recorded on-line in April 2012 without any filtering indicating slot PD	62
Figure C.15 – Picture of a bar removed for expertise chosen to be the one with the highest level on phase 2 and close to line side when scanning slots using the TVA probe in January 2014	62
Figure C.16 – PD pattern recorded on-line on phase 2 in September 2016 (maximum scale is 1 V)	62
Figure C.17 – PRPD plot and photo of a stator bar in the same phase of a large air-cooled turbine generator showing signs of deterioration of the slot conductive coating, as well deterioration of the interface between the slot conductive coating and the stress control coating.	63
Figure C.18 – Surface tracking activity along the end arm and corresponding PRPD pattern, recorded on-line	63
Figure C.19 – Degradation caused by gap type discharges and corresponding PRPD patterns, recorded on-line	64
Figure C.20 – PRPD pattern recorded on-line, illustrating multiple PD sources showing the complexity	65
Figure C.21 – Three phase PRPD showing phase to phase PD between A and B phases as well as B and C phases; photo showing the as-found PD in the endwinding area due to inadequate separation between the phases	66
Table 1 – Operating condition stability to obtain valid trends in PD	30

This is a preview - click here to buy the full publication

- 6 -

IEC 60034-27-2:2023 © IEC 2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ROTATING ELECTRICAL MACHINES –

Part 27-2: On-line partial discharge measurements on the stator winding insulation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60034-27-2 has been prepared by IEC technical committee 2: Rotating machinery. It is an International Standard.

The text of this International Standard is based on the following documents:

Draft	Report on voting
2/2153/FDIS	2/2166/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

- 7 -

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60034 series, published under the general title *Rotating electrical machines*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

- 8 -

IEC 60034-27-2:2023 © IEC 2023

INTRODUCTION

Partial Discharge (PD) on-line measurement of rotating electrical machines has gained widespread acceptance as it could reveal the presence of localized weak points of the stator insulation system and also various arcing and sparking phenomena. Nevertheless, it has emerged from several studies that not only are there many different methods of measurement in existence, but also the criteria and methods of analysing and finally assessing the measured data are often very different and not really comparable. Consequently, there is a need to have an International Standard (IS) to give defined guidelines to the users of on-line PD measurements to assess the condition of their insulation systems.

On-line PD measurements are recorded with the rotating electrical machine experiencing all of the operating stresses; thermal, electrical, environmental and mechanical. Due to the realistic stress impact on the winding during measurement and due to the fact that the measurement is performed during all kinds of normal operation like base load and peak load, PD on-line testing could identify changes of the winding insulation system at a premature stage and enables real-time condition assessment as part of predictive maintenance strategies.

PD trend evaluation and comparisons with machines of similar design and similar insulation system measured under similar conditions, using the same measuring equipment, are recommended to ensure reliable assessment of the condition of the stator winding insulation. The trending information provides a good measure for early indication of a change in insulation condition. This gives time for planning further standstill examination in terms of visual inspection and off-line testing during next inspection outage.

This document does not deal with on-line PD measurements on converter driven electrical machines because different measuring techniques are needed to distinguish between noise from the converter and PD from the winding.

Limitations:PD on-line tests on stator windings produce comparative, rather than absolute measurements. This creates a fundamental limitation for the interpretation of PD data. Therefore, acceptance criteria with simple limits for new or rewound stator windings cannot be established as the following reasons demonstrate:

- There are many types of PD sensors as well as recording and analysing instruments. Generally, they are incompatible and will produce different results for the same PD activity.
- Even with the same measuring system, the high frequency partial discharge pulses will interact with the winding capacitance and inductance on their way from point of origin to the measuring point, e.g. at the winding terminals. Thus, PD measurements taken at machines with different winding design and rating produce different PD results, even though the actual type of PD source is the same.
- Different types of winding defects produce different PD magnitudes and have different impact on insulation destruction. There is no strong correlation between high PD and high risk of insulation failure.
- PD activity may occur close or far from the PD sensor. In general, if the PD source is inside the winding coils far away from the PD sensor, it will produce a smaller response at the PD sensor at the terminals compared to a PD source at the phase connections nearby due to pulse attenuation.

Users should also be aware that there is no evidence that the time to failure of the stator winding insulation can be estimated using any PD quantity, alone or even in combination. In order to more comprehensively describe the condition of the stator insulation, PD measurements are required to be supplemented by other electrical tests. Also, determining the root cause of an insulation deterioration process using PD pattern recognition, especially if more than one process is occurring, is still somewhat subjective, although the digital analysing technology is evolving rapidly.

Noise and disturbance from electrical environment have a great impact to on-line PD measurement. Cross-coupling of PD and noise between different phases can make objective interpretation of the test results difficult. Therefore, different analogue and digital noise suppression techniques are used to improve PD measuring sensitivity and PD analysing tools.

Users of PD measurement should be aware that, due to the principles of the method, not all insulation-related problems in stator windings can be detected by measuring on-line PD activity, e.g. insulation failures involving continuous leakage currents due to conductive paths between different electrical potential of the insulation system or fine main insulation cracks with too small PD activity compared to normal delamination PD or pulse-less discharge phenomena.

- 10 -

IEC 60034-27-2:2023 © IEC 2023

ROTATING ELECTRICAL MACHINES –

Part 27-2: On-line partial discharge measurements on the stator winding insulation

1 Scope

This part of IEC 60034-27 deals with on-line PD measurements and provides a common basis with standardized procedures if possible for:

- measuring techniques and instruments;
- the arrangement of the installation;
- normalization and sensitivity assessment;
- measuring procedures;
- noise reduction;
- the documentation of results;
- the interpretation of results;

with respect to partial discharge on-line measurements on the stator winding insulation of non-converter driven rotating electrical machines with rated voltage of 3 kV and up. This document covers PD measuring systems and methods detecting electrical PD signals. The same measuring devices and procedures can also be used to detect electrical sparking and arcing phenomena.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034-27-1:2017, Rotating electrical machines – Part 27-1: Off-line partial discharge measurements on the winding insulation

IEC 60034-27-3, Rotating electrical machines – Part 27-3: Dielectric dissipation factor measurement on stator winding insulation of rotating electrical machines

IEC 60060-1, *High-voltage test techniques – Part 1: General definitions and test requirements*

IEC 60068-2-6, Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)

IEC 60068-2-27, Environmental testing – Part 2-27: Tests – Test Ea and guidance: Shock

IEC 60112, Method for the determination of the proof and the comparative tracking indices of solid insulating materials

IEC 60270:2000, High-voltage test techniques – Partial discharge measurements

IEC 62271-1, High-voltage switchgear and controlgear – Part 1: Common specifications for alternating current switchgear and controlgear

IEC 60034-27-2:2023 © IEC 2023 - 11 -

IEC TS 62478, High voltage test techniques – Measurement of partial discharges by electromagnetic and acoustic methods

ISO 8528-9: Reciprocating internal combustion engine driven alternating current generating sets – Part 9: Measurement and evaluation of mechanical vibrations

- 70 -

IEC 60034-27-2:2023 © IEC 2023

SOMMAIRE

A١	AVANT-PROPOS		
IN	INTRODUCTION		
1	Dom	aine d'application	78
2	Réfé	rences normatives	78
3	Term	nes et définitions	79
4	Caus	se et effets d'une DP en fonctionnement	81
5	Bruit	et perturbations	82
•	5 1	Généralités	82
	5.2	Sources de bruit et de perturbations	
6	Tech	niques et appareils de mesure	83
	6.1	Généralités	.83
	6.2	Propagation des impulsions dans les enroulements	84
	6.3	Caractéristiques de transfert des signaux	85
	6.4	Détecteurs de DP	88
	6.4.1	Généralités	88
	6.4.2	Conception des détecteurs de DP	89
	6.4.3	Fiabilité des détecteurs de DP	89
	6.5	Appareil de mesure des DP	90
	6.6	Paramètres de mesure des DP	90
	6.6.1	Généralités	90
	6.6.2	Amplitude de DP	90
-	6.6.3	Paramètres de DP supplémentaires	91
1	Insta	liation des systemes de mesure	91
	7.1	Généralités	91
	7.2	Installation des détecteurs de DP	91
	7.3	Point d'acces exterieur et cablage	92
	7.4 7.5	Installation de l'appareil de mesure des DP	93
8	Norm	nalisation des mesurades	95
0	8 1		
	0.1 8.2	Normalisation pour les systèmes basse fréquence	94 Q4
	821	Généralités	
	8.2.2	Procédure de normalisation	95
	8.3	Normalisation/contrôle de sensibilité pour les systèmes hautes et très	
		hautes fréquences	96
	8.3.1	Spécification pour la génération d'impulsions électroniques	96
	8.3.2	Configuration de la machine	97
	8.3.3	Contrôle de sensibilité	97
9	Proc	édures de mesure	98
	9.1	Généralités	98
	9.2	Paramètres de fonctionnement de la machine	98
	9.3	Mesurage de référence	98
	9.3.1	Generalités	
	9.3.2	Procedure d'essal complete	
	9.4 0.5	Mesurages periodiques	100
	9.5	mesurages continus	100

10 Visu	alisation des mesurages	
10.1	Généralités	
10.2	Visualisation des paramètres de suivi d'évolution	
10.3	Visualisation des patrons de DP	
11 Inter	prétation des mesurages en fonctionnement	
11 1	Généralités	105
11.1	Évaluation des paramètres d'évolution de base	105
11.2	Évaluation des parametres de Volution de Dase	107
11.0	1 Généralités	107
11.0	2 Interprétation des patrons de DP	107
11.0	Effet des facteurs de fonctionnement des machines	107
11 A	1 Généralités	108
11.4	2 Eacteurs de fonctionnement de la machine	108
11.4	3 Conditions de charge en régime permanent	108
11.4	Conditions de charge transitoires	100
12 Rann	oort d'essai	110
Annexe A	(Informative) Nature des DP dans les machines electriques tournantes	112
A.1	Types de DP dans les machines électriques tournantes	112
A.1.1	I Généralités	
A.1.2	2 Décharges internes	
A.1.3	B Décharges d'encoche	
A.1.4	Décharges dans la développante	
A.1.5	5 Particules conductrices	
A.2	Formation d'arcs et étincelles	
A.2.1	l Généralités	
A.2.2	2 Formation d'arcs au niveau des conducteurs rompus	114
A.2.3	8 Étincelles dues aux vibrations (électroérosion)	114
Annexe B	6 (informative) Élimination des perturbations et séparation des signaux	115
B.1	Généralités	
B.2	Séparation dans le domaine fréquentiel	115
B.3	Séparation dans le domaine temporel	115
B.4	Combinaison des séparations dans le domaine fréquentiel et dans le	
	domaine temporel	
B.5	Mesurage synchrone multicanal	
B.6	Blocage des signaux	
B.7	Identification des patrons	119
Annexe C	(informative) Exemples de patrons de DP	121
C.1	Généralités	
C.2	Aspect principal des patrons de DP	121
C.3	Exemples de patrons de DP types enregistrés en laboratoire	124
C.3.7	1 Généralités	
C.3.2	2 Décharges internes	
C.3.3	3 Décharges partielles d'encoche	
C.3.4	1 Décharges dans la développante	
C.4	Exemples de patrons de DP types enregistrés en fonctionnement	130
C.4.1	1 Généralités	
C.4.2	2 Décharges internes	
C.4.3	3 Décharges partielles d'encoche	

- 72 -	
--------	--

C.4.4	Décharges dans la développante	134
C.5	Autres exemples complexes	136
Annexe D de DP	(normative) Spécifications pour des condensateurs de couplage classiques	138
D.1	Généralités	138
D.2	Informations de fiche technique	138
D.3	Essais de type	138
D.3.1	Généralités	138
D.3.2	Endurance à la tension	138
D.3.3	Résistance au cheminement	139
D.3.4	Essai de choc de foudre	139
D.3.5	Facteur de dissipation	139
D.3.6	Stabilité de la capacité en température	139
D.3.7	Cyclage thermique	139
D.3.8	Réponse en fréquence	139
D.4	Capacités de résistance aux vibrations mécaniques et aux chocs	139
D.5	Essais individuels de série	140
D.5.1	Généralités	140
D.5.2	Essai de tenue diélectrique à la fréquence de tension	140
D.5.3	Essai de tension d'extinction des décharges partielles	140
D.5.4	Capacité et facteur de dissipation	140
Figure 1 –	Aperçu générique du système de mesure des DP et de ses sous-systèmes	84
Figure 2 -	Cascade de canaux de réponse en fréquence	85
Figure 3 -	Réponse en fréquence théorique d'une impulsion de DP au niveau de la	
source de	DP et aux bornes de la machine; réponse en fréquence de différents	
systèmes	de mesure de DP: a) plage de basses fréquences, b) plage de hautes	00
requence	s, c) plage de tres nautes frequences	80
Figure 4 – identique	Objet de mesure dans un processus de normalisation, état du point neutre à un point neutre en fonctionnement	95
Figure 5 -	Dispositif pour le contrôle de sensibilité	96
Figure 6 -	Procédure d'essai recommandée dans des conditions de charge et de	
températu	re consécutives	99
Figure 7 –	Exemple d'évolution de l'activité de DP de crête en trois phases sur un	100
		102
Figure 8 –	Exemples de patrons de DP	103
Figure 9 – un espace	Diagrammes de patrons de DP entre phases dans lesquels la DP est due à ment insuffisant entre les développantes des phases B et C	104
Figure B.1	 Exemple de séparation dans le domaine temporel par le temps d'arrivée 	116
) Séreveties combinée des perturbations dans la demoine temperal et	110
fréquentie	l (représentation de la fréquence temporelle)	117
Figure B.3	B – Diagramme en étoile triphasé d'un mesurage multicanal	118
Figure C.1	– DP pilotées par la phase et la terre - DP principalement centrées sur 45°	100
	nes le passaye par zero de la tension priase-terre	122
Figure C.2	2 – Evenements de DP et autres sources, par exemple, sources autres que	
phase-terr	e	123
Figure C.3	B – Exemple de patron de DP de décharges de vacuoles, enregistré lors	
d'une simi	ulation en laboratoire	125

Figure C.4 – Exemple de patron de DP de délamination, enregistré lors d'une simulation en laboratoire	125
Figure C.5 – Exemple de patron de DP de délamination entre conducteur et isolation, enregistré lors d'une simulation en laboratoire	126
Figure C.6 – Activité de décharges partielles d'encoche et patron de DP correspondant, enregistré lors d'une simulation en laboratoire	127
Figure C.7 – Activité de décharge par effet couronne au niveau du revêtement de protection anti-effluves et du revêtement de répartition de contrainte, et patron de DP correspondant, enregistré lors d'une simulation en laboratoire	127
Figure C.8 – Activité de cheminement de surface le long de l'extrémité de bobine et de patron de DP correspondant, enregistré lors d'une simulation en laboratoire	128
Figure C.9 – Décharges superficielles à la jonction entre le revêtement de protection anti-effluves et le revêtement d'encoches conducteur. a) Bande d'isolation simulant une mauvaise connexion électrique entre le revêtement d'encoches conducteur et le revêtement de protection anti-effluves, et patron de DP correspondant:b) et c) interruption complète de la connexion.	129
Figure C.10 – Activités de décharges de type amorçage et patrons de DP correspondants, enregistrés lors de simulations en laboratoire	130
Figure C.11 – Exemple de patron de DP de décharges de vacuoles, enregistré en fonctionnement	131
Figure C.12 – Exemple de patron de DP de délamination interne, enregistré en fonctionnement	131
Figure C.13 – Exemple de patron de DP de délamination entre conducteur et isolation, enregistré en fonctionnement	132
Figure C.14 - Patron de DP de phase 2 enregistré en fonctionnement en avril 2012 sans aucun filtrage indiquant la DP d'encoche	133
Figure C.15 – Image d'une barre retirée pour expertise, choisie comme étant celle dont le niveau est le plus élevé sur la phase 2 et proche du côté réseau lors du balayage des encoches à l'aide de la sonde TVA en janvier 2014	133
Figure C.16 – Patron de DP enregistré en fonctionnement sur la phase 2 en septembre 2016 (l'échelle maximale est de 1 V)	133
Figure C.17 – Diagramme de patron de DP et photographie d'une barre de stator dans la même phase d'un grand turbogénérateur refroidi par air, qui présentent des signes de détérioration du revêtement d'encoches conducteur, ainsi que la détérioration de l'interface entre le revêtement d'encoches conducteur et le revêtement de protection	104
Figure C.18 – Activité de cheminement de surface le long de l'extrémité de bobine et patron de DP correspondant enregistré en fonctionnement	134
Figure C.19 – Dégradation provoquée par des décharges de type amorçage et patrons de DP correspondants, enregistrés en fonctionnement	135
Figure C.20 – Patron de DP enregistré en fonctionnement, qui représente plusieurs sources de DP représentatives de la complexité	136
Figure C.21 – Patron de DP triphasée qui représente une DP entre phases (phases A et B, ainsi que phases B et C); photographie de représentation de la DP en l'état dans la zone de la développante, en raison d'une séparation inappropriée entre les phases	137
Tableau 1 – Stabilité des conditions de fonctionnement afin d'obtenir des évolutions valables des DP	100

This is a preview - click here to buy the full publication

- 74 -

IEC 60034-27-2:2023 © IEC 2023

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MACHINES ÉLECTRIQUES TOURNANTES -

Partie 27-2: Mesurages en fonctionnement des décharges partielles effectués sur le système d'isolation

AVANT-PROPOS

- 1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments du présent document de l'IEC peuvent faire l'objet de droits de brevets. L'IEC ne prend pas position quant à la preuve, à la validité et à la portée de ces droits de propriété. À la date de publication du présent document, l'IEC n'a reçu aucune déclaration relative à des droits de brevets, qui pourraient être exigés pour la mise en œuvre du présent document. Toutefois, il est rappelé aux responsables de cette mise en œuvre qu'il ne s'agit peut-être pas des informations les plus récentes, qui peuvent être obtenues dans la base de données disponible à l'adresse https://patents.iec.ch. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets.

L'IEC 60034-27-2 a été établie par le comité d'études 2 de l'IEC: Machines tournantes. Il s'agit d'une Norme internationale.

- 75 -

Le texte de cette Norme internationale est issu des documents suivants:

Projet	Rapport de vote
2/2153/FDIS	2/2166/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à son approbation.

La langue employée pour l'élaboration de cette Norme internationale est l'anglais.

Ce document a été rédigé selon les directives ISO/IEC, Partie 2, il a été développé selon les directives ISO/IEC, Partie 1 et les directives ISO/IEC, Supplément IEC, disponibles sous www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par l'IEC sont décrits plus en détail sous www.iec.ch/publications.

Une liste de toutes les parties de la série IEC 60034, publiées sous le titre général *Machines électriques tournantes*, se trouve sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous <u>webstore.iec.ch</u> dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

- 76 -

IEC 60034-27-2:2023 © IEC 2023

INTRODUCTION

Le mesurage en fonctionnement des décharges partielles (DP) des machines électriques tournantes est largement accepté, car il peut révéler la présence de points faibles localisés du système d'isolation du stator ainsi que différents phénomènes d'arc et d'étincelle. Néanmoins, plusieurs études ont démontré que non seulement de nombreuses méthodes de mesure différentes existent, mais également que les critères et méthodes d'analyse et d'évaluation finale des données mesurées sont souvent très différents et non véritablement comparables. Par conséquent, il est nécessaire de disposer d'une Norme internationale (IS - International Standard) fournissant des lignes directrices définies aux utilisateurs des mesurages des DP en fonctionnement pour évaluer l'état de leurs systèmes d'isolation.

Les mesurages en fonctionnement des DP sont enregistrés avec la machine électrique tournante soumise à toutes les contraintes de service (thermiques, électriques, environnementales et mécaniques). En raison de l'impact réaliste des contraintes sur l'enroulement pendant le mesurage et du fait que ledit mesurage est effectué pendant tous les types de fonctionnements normaux, comme la charge de base et la charge de pointe, les essais en fonctionnement de DP peuvent identifier les modifications du système d'isolation de l'enroulement à un stade précoce et permettent une évaluation de l'état en temps réel dans le cadre de stratégies de maintenance prédictive.

Une évaluation de l'évolution des DP et des comparaisons avec des machines de conception similaire et avec un système d'isolation analogue mesurés dans des conditions similaires, au moyen du même appareillage de mesure, sont recommandées afin d'assurer une évaluation fiable de l'état du système d'isolation des enroulements statoriques. Les informations de suivi d'évolution fournissent une bonne mesure pour l'indication précoce d'une variation de l'état du système d'isolation. Cette disposition permet de planifier un examen complémentaire à l'arrêt en matière d'inspection visuelle et d'essais à l'arrêt lors de la prochaine interruption pour inspection.

Le présent document ne traite pas des mesurages en fonctionnement des DP sur des machines électriques entraînées par convertisseur étant donné que différentes techniques de mesure sont nécessaires pour différencier le bruit émis par le convertisseur des DP de l'enroulement.

Limitations: les essais en fonctionnement des DP sur les enroulements statoriques produisent des mesures comparatives et non absolues. Ce phénomène crée une limite fondamentale pour l'interprétation des données de DP. Par conséquent, des critères d'acceptation associés à des limites simples pour de nouveaux enroulements statoriques ou des enroulements statoriques rebobinés ne peuvent être établis comme le démontrent les raisons suivantes:

- il existe de nombreux types de détecteurs de DP ainsi que d'instruments d'enregistrement et d'analyse. Généralement, ils sont incompatibles et produisent des résultats différents pour la même activité de DP;
- même avec un système de mesure identique, les impulsions de décharge partielle à haute fréquence interagissent avec la capacité et l'inductance de l'enroulement sur leur trajet entre le point d'origine et le point de mesure, par exemple aux bornes de l'enroulement. Ainsi, les mesurages des DP effectués sur des machines dont la conception et le calibre des enroulements sont différents produisent des résultats de DP différents, même si le type réel de source de DP est le même;
- les différents types de défauts d'enroulement produisent des amplitudes de DP différentes et ont un impact différent sur la destruction de l'isolation. Il n'existe pas de forte corrélation entre une DP élevée et un risque élevé de défaut d'isolement;
- l'activité de DP peut se produire à proximité ou à distance du détecteur de DP. En général, lorsque la source de DP se trouve à l'intérieur des bobines d'enroulement, à grande distance du détecteur de DP, elle produit une réponse plus faible au dit détecteur au niveau des bornes par rapport à une source de DP aux connexions de phase à proximité en raison de l'affaiblissement des impulsions.

Il convient que les utilisateurs sachent également que rien ne démontre que la durée de fonctionnement avant défaillance de l'isolation de l'enroulement statorique puisse être estimée à l'aide de toute grandeur de DP, seule ou même combinée. Afin de décrire de manière plus complète l'état de l'isolation statorique, les mesurages des DP doivent être complétés par d'autres essais électriques. De même, la détermination de la cause profonde d'un processus de détérioration de l'isolation à l'aide de l'identification des patrons de DP, en particulier si plusieurs processus se produisent, est encore quelque peu subjective, bien que la technologie d'analyse numérique évolue rapidement.

Le bruit et les perturbations qui proviennent de l'environnement électrique ont une incidence significative sur les mesurages en fonctionnement des DP. Le couplage croisé des DP et du bruit entre différentes phases peut rendre difficile une interprétation objective des résultats d'essai. Par conséquent, différentes techniques analogiques et numériques de suppression du bruit sont utilisées pour améliorer la sensibilité de mesure des DP et les outils d'analyse de ces dernières.

Il convient que les utilisateurs des mesurages des DP sachent que, du fait des principes méthodologiques, la mesure de l'activité de DP en fonctionnement ne permet pas de détecter tous les problèmes liés au système d'isolation des enroulements statoriques, par exemple, les défauts d'isolement qui impliquent des courants de fuite continus dus à des chemins conducteurs entre différents potentiels électriques du système d'isolation ou de fines fissures principales de l'isolation avec une activité de DP trop faible par rapport à une DP de délamination normale ou à des phénomènes de décharge sans impulsion.

- 78 -

IEC 60034-27-2:2023 © IEC 2023

MACHINES ÉLECTRIQUES TOURNANTES –

Partie 27-2: Mesurages en fonctionnement des décharges partielles effectués sur le système d'isolation

1 Domaine d'application

La présente partie de l'IEC 60034-27 traite des mesurages en fonctionnement des DP et fournit une base commune avec, lorsque c'est possible, des procédures normalisées pour:

- les techniques et les appareils de mesure;
- la mise en place de l'installation;
- l'évaluation de la normalisation et de la sensibilité;
- les procédures de mesure;
- la réduction du bruit;
- la documentation des résultats;
- l'interprétation des résultats;

pour les besoins des mesurages en fonctionnement des décharges partielles sur le système d'isolation des enroulements statoriques des machines électriques tournantes non entraînées par convertisseur, avec une tension assignée supérieure ou égale à 3 kV. Le présent document couvre les systèmes de mesure des DP et les méthodes de détection des signaux de DP électriques. Les mêmes appareils et procédures de mesure peuvent également être utilisés pour détecter les phénomènes d'étincelles et d'arc électriques.

2 Références normatives

Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur contenu, des exigences du présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60034-27-1:2017, Machines électriques tournantes – Partie 27-1: Mesurages à l'arrêt des décharges partielles effectués sur le système d'isolation des enroulements

IEC 60034-27-3, Machines électriques tournantes – Partie 27-3: Mesure du facteur de dissipation diélectrique sur le système d'isolation des enroulements statoriques des machines électriques tournantes

IEC 60060-1, Technique des essais à haute tension – Partie 1: Définitions et exigences générales

IEC 60068-2-6, Essais d'environnement – Partie 2-6: Essais – Essais Fc: Vibrations (sinusoïdales)

IEC 60068-2-27, Essais d'environnement – Partie 2-27: Essais – Essais Ea et guide: Chocs

IEC 60112, Méthode de détermination des indices de résistance et de tenue au cheminement des matériaux isolants solides

IEC 60034-27-2:2023 © IEC 2023 - 79 -

IEC 60270:2000, Technique des essais à haute tension – Mesure des décharges partielles

IEC 62271-1, Appareillage à haute tension – Partie 1: Spécifications communes pour appareillage à courant alternatif

IEC TS 62478, Technique des essais à haute tension – Mesurage des décharges partielles par méthodes électromagnétiques et acoustiques

ISO 8528-9: Groupes électrogènes à courant alternatif entraînés par moteurs alternatifs à combustion interne – Partie 9: Mesurage et évaluation des vibrations mécaniques