Insulation co-ordination –
Part 2:
Application guide

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
F.1 Corona damping constant K_{co} ... 175
F.2 Factor A for various overhead lines.. 185
G.1 Typical gap factors K for switching impulse breakdown phase-to-earth 195
G.2 Gap factors for typical phase-to-phase geometries.. 197
H.1 Summary of minimum required withstand voltages obtained for example H.1.1 213
H.2 Summary of required withstand voltages obtained for example H.1.2 217
H.3 Values related to the insulation co-ordination procedure for example H.3 249

Figures
1 Range of 2 % slow-front overvoltages at the receiving end due to line energization and re-energization.. 39
2 Ratio between the 2 % values of slow-front overvoltages phase-to-phase and phase-to-earth... 41
3 Diagram for surge arrester connection to the protected object........................... 55
4 Distributive discharge probability of self-restoring insulation described on a linear scale ... 73
5 Disruptive discharge probability of self-restoring insulation described on a Gaussian scale ... 73
6 Evaluation of deterministic co-ordination factor K_{cd} .. 75
7 Evaluation of the risk of failure.. 77
8 Risk of failure of external insulation for slow-front overvoltages as a function of the statistical co-ordination factor K_{cs} ... 81
9 Dependence of exponent m on the co-ordination switching impulse withstand voltage ... 87
10 Probability P of an equipment to pass the test dependent on the difference K between the actual and the rated impulse withstand voltage....................................... 99
11 Example of a schematic substation layout used for the overvoltage stress location (see 7.1) ... 107
B.1 Earth-fault factor k on a base of X_0/X_1 for $R_1/X_1 = R = 0$ 125
B.2 Relationship between R_0/X_1 and X_0/X_1 for constant values of earth-fault factor k where $R_1 = 0$.. 125
B.3 Relationship between R_0/X_1 et X_0/X_1 for constant values of earth-fault factor k where $R_1 = 0,5 X_1$... 127
B.4 Relationship between R_0/X_1 et X_0/X_1 for constant values of earth-fault factor k where $R_1 = X_1$... 127
B.5 Relationship between R_0/X_1 et X_0/X_1 for constant values of earth-fault factor k where $R_1 = 2X_1$... 129
C.1 Conversion chart for the reduction of the withstand voltage due to placing insulation configurations in parallel... 139
D.1 Example for bivariate phase-to-phase overvoltage curves with constant probability density and tangents giving the relevant 2 % values 151
D.2 Principle of the determination of the representative phase-to-phase overvoltage U_{pre} ... 153
D.3 Schematic phase-phase-earth insulation configuration 153
D.4 Description of the 50 % switching impulse flashover voltage of a phase-phase-earth insulation... 155
D.5 Inclination angle of the phase-to-phase insulation characteristic in range b dependent on the ratio of the phase-phase clearance D to the height H_t above earth.......................... 157

E.1 Distributed capacitances of the windings of a transformer and the equivalent circuit describing the windings .. 169

E.2 Values of factor J describing the effect of the winding connections on the inductive surge transference .. 171

Annexes

A Clearances in air to assure a specified impulse withstand voltage installation.............. 115
B Determination of temporary overvoltages due to earth faults .. 123
C Weibull probability distributions.. 131
D Determination of the representative slow-front overvoltage due to line energization and re-energization.. 141
E Transferred overvoltages in transformers... 159
F Lightning overvoltages... 173
G Calculation of air gap breakdown strength from experimental data 187
H Examples of insulation co-ordination procedure .. 199
J Bibliography .. 251
INTERNATIONAL ELECTROTECHNICAL COMMISSION

INSULATION CO-ORDINATION –

Part 2: Application guide

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees: any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 71-2, has been prepared by IEC technical committee 28: Insulation co-ordination.

This third edition cancels and replaces the second edition published in 1976 and constitutes a technical revision.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>28/115/FDIS</td>
<td>28/117/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

Annex A forms an integral part of this standard.

Annexes B to J are for information only.
1 General

1.1 Scope

This part of IEC 71 constitutes an application guide and deals with the selection of insulation levels of equipment or installations for three-phase electrical systems. Its aim is to give guidance for the determination of the rated withstand voltages for ranges I and II of IEC 71-1 and to justify the association of these rated values with the standardized highest voltages for equipment.

This association is for insulation co-ordination purposes only. The requirements for human safety are not covered by this application guide.

It covers three-phase systems with nominal voltages above 1 kV. The values derived or proposed herein are generally applicable only to such systems. However, the concepts presented are also valid for two-phase or single-phase systems.

It covers phase-to-earth, phase-to-phase and longitudinal insulation.

This application guide is not intended to deal with routine tests. These are to be specified by the relevant product committees.

The content of this guide strictly follows the flow chart of the insulation co-ordination process presented in figure 1 of IEC 71-1. Clauses 2 to 5 correspond to the squares in this flow chart and give detailed information on the concepts governing the insulation co-ordination process which leads to the establishment of the required withstand levels.

The guide emphasizes the necessity of considering, at the very beginning, all origins, all classes and all types of voltage stresses in service irrespective of the range of highest voltage for equipment. Only at the end of the process, when the selection of the standard withstand voltages takes place, does the principle of covering a particular service voltage stress by a standard withstand voltage apply. Also, at this final step, the guide refers to the correlation made in IEC 71-1 between the standard insulation levels and the highest voltage for equipment.

The annexes contain examples and detailed information which explain or support the concepts described in the main text, and the basic analytical techniques used.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 71. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 71 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.
IEC 56: 1987, High-voltage alternating-current circuit-breakers

IEC 60-1: 1989, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 99-5: 1996, Surge arresters – Part 5: Selection and application recommendations – Section 1: General

IEC 505: 1975, Guide for the evaluation and identification of insulation systems of electrical equipment

IEC 507: 1991, Artificial pollution test on high-voltage insulators to be used on a.c. systems

IEC 721-2-3: 1987, Classification of environmental conditions – Part 2: Environmental conditions appearing in nature – Air pressure

IEC 815: 1986, Guide for the selection of insulators in respect of polluted conditions