

IEC 60193

Edition 3.0 2019-04

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Hydraulic turbines, storage pumps and pump-turbines – Model acceptance tests

Turbines hydrauliques, pompes d'accumulation et pompes-turbines – Essais de réception sur modèle

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.140

ISBN 978-2-8322-6659-5

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale
 – 2 –

IEC 60193:2019 © IEC 2019

CONTENTS

FC	DREWO	RD		13
1	Scop	e		15
2	Norm	native	e references	17
3 Terms, definitions, symbols and units			finitions, symbols and units	18
	3.1	Gen	eral	18
	3.2	Gen	eral terminology	18
	3.3	Unit	s	20
	3.4	Defi	nition of terms, symbols and units	20
	3.4.1		List of terms and definitions by topic	20
	3.4.2		Subscripts and symbols	21
	3.4.3		Geometric terms	23
	3.4.4		Physical quantities and properties	25
	3.4.5	i	Discharge, velocity and speed terms	26
	3.4.6	i	Pressure terms	27
	3.4.7	•	Specific energy terms	27
	3.4.8		Height and head terms	30
	3.4.9)	Power and torque terms	32
	3.4.1	0	Efficiency terms	34
	3.4.1	1	General terms relating to fluctuating quantities	35
	3.4.1	2	Fluid dynamics and scaling terms ^{a)}	37
	3.4.1	3	Dimensionless terms	38
	3.4.1	4	Terms relating to additional performance data	39
4	Natu	re an	d extent of guarantees related to hydraulic performance	40
	4.1	Gen	eral	40
	4.1.1		Design data and coordination	40
	4.1.2		Definition of the hydraulic performance guarantees	40
	4.1.3		Guarantees of correlated quantities	41
	4.1.4		Form of guarantees	41
	4.2	Mair	n hydraulic performance guarantees verifiable by model test	41
	4.2.1		Guaranteed quantities for any machine	41
	4.2.2		Specific application	42
	4.3	Gua	rantees not verifiable by model test	43
	4.3.1		Guarantees on cavitation erosion	43
	4.3.2		Guarantees on maximum momentary overspeed and maximum momentary pressure rise	44
	4.3.3		Guarantees covering noise and vibration	44
	4.4	Add	itional performance data	
5	Exec	ution	of tests	45
-	5 1	Rea	uirements of test installation and model	45
	511	тсч	Choice of laboratory	
	512	,	Test installation	
	513		Model requirements	4 5
	5.2	Dim	ensional check of model and prototype	49 49
	521	2	General	4 0
	522		Explanation of terms used for model and prototype	4 0
	523		Purpose of dimensional checks	49
	5.2.4		General rules	

- 3 -	
-------	--

	5.2.5	Procedure	51
	5.2.6	Application for different types of machines	
	5.2.7	Methods	52
	5.2.8	Accuracy of measurements	61
	5.2.9	Dimensions of model and prototype to be checked	62
	5.2.10	Permissible maximum deviations in geometrical similarity between	
	E 0 44	prototype and model for turbines, pumps and pump-turbines	
	5.2.11	Surface waviness and roughness	
	5.3 Hy0	The sectional has is as a wine mean to an a similitude much and	
	5.3.1	Or ditions for budgevils similitude or used in this desurrant.	
	5.3.Z	Conditions for hydraulic similitude as used in this document	
	5.3.3	Similitude requirements for various types of model tests	
	5.3.4		
	5.3.5	Froude similitude	
	5.3.6	Other similitude conditions	80
	5.4 les	t conditions	81
	5.4.1	Determination of test conditions	81
	5.4.2	Minimum values for model size and test conditions to be fulfilled	82
	5.4.3	Stability and fluctuations during measurements	83
	5.4.4	Adjustment of the operating point	83
	5.5 Tes	t procedures	83
	5.5.1	Organization of tests	83
	5.5.2	Inspections and calibrations	86
	5.5.3	Execution of tests	
	5.5.4	Faults and repetition of tests	93
	5.5.5	Final test report	94
	5.6 Intro	oduction to the methods of measurement	95
	5.6.1	General	95
	5.6.2	Measurements related to the main hydraulic performance guarantees	95
	5.6.3	Measurements related to additional data	97
	5.6.4	Acquisition and processing of data	97
	5.7 Phy	sical properties	97
	5.7.1	General	97
	5.7.2	Acceleration due to gravity	97
	5.7.3	Physical properties of water	98
	5.7.4	Physical conditions of atmosphere	104
	5.7.5	Density of mercury	104
6	Main hyd	raulic performances: methods of measurement and results	105
	6.1 Dat	a acquisition and data processing	105
	6.1.1	Overview	105
	6.1.2	General requirements	105
	6.1.3	Data acquisition	105
	6.1.4	Component requirements	107
	6.1.5	Check of the data acquisition system	110
	6.2 Dise	charge measurement	112
	6.2.1	General	112
	6.2.2	Choice of the method of measurement	112
	6.2.3	Accuracy of measurement	113
	6.2.4	Primary methods	114

– 4 –

	6.2.5	Secondary methods	115
(6.3	Pressure measurement	118
	6.3.1	General	. 118
	6.3.2	Choice of pressure-measuring section	119
	6.3.3	Pressure taps and connecting lines	119
	6.3.4	Apparatus for pressure measurement	121
	6.3.5	Calibration of pressure measurement apparatus	128
	6.3.6	Vacuum measurements	. 129
	6.3.7	Uncertainty in pressure measurements	. 129
(6.4	Free water level measurement (see also ISO 4373)	. 129
	6.4.1	General	. 129
	6.4.2	Choice of water level measuring sections	. 130
	6.4.3	Number of measuring points in a measuring section	130
	6.4.4	Measuring methods	. 130
	6.4.5	Uncertainty in free water level measurement	. 131
6	6.5	Determination of <i>E</i> and <i>NPSE</i>	. 132
	6.5.1	General	. 132
	6.5.2	Determination of the specific hydraulic energy <i>E</i>	133
	6.5.3	Simplified formulae for <i>E</i>	. 135
	6.5.4	Determination of the net positive suction-specific energy NPSE	142
(6.6	Shaft torque measurement	. 144
	6.6.1	General	. 144
	6.6.2	Methods of torque measurement	. 144
	6.6.3	Methods of absorbing/generating power	. 145
	6.6.4	Layout of arrangement	. 145
	6.6.5	Checking of system	. 150
	6.6.6	Calibration	. 150
	6.6.7	Uncertainty in torque measurement (at a confidence level of 95 %)	151
(6.7	Rotational speed measurement	. 152
	6.7.1	General	. 152
	6.7.2	Methods of speed measurement	. 152
	6.7.3	Checking	. 152
	6.7.4	Uncertainty of measurement	. 152
6	6.8	Computation and presentation of test results	. 153
	6.8.1	General	. 153
	6.8.2	Power, discharge and efficiency in the guarantee range	. 158
	6.8.3	Computation of steady-state runaway speed and discharge	. 171
6	5.9	Error analysis	. 176
	6.9.1	Definitions	. 176
	6.9.2	Determination of uncertainties in model tests	. 178
(5.10	Comparison with guarantees	. 182
	6.10.1	General	. 182
	6.10.2	2 Interpolation curve and total uncertainty bandwidth	. 183
	6.10.3	Power, discharge and/or specific hydraulic energy and efficiency in the guarantee range	. 184
	6.10.4	Runaway speed and discharge	. 188
	6.10.5	Cavitation guarantees	. 189
7	Additi	onal performance data – Methods of measurement and results	. 191
-	7.1	Introduction to additional data measurement	. 191

- 5 -

7.1.1	General	191
7.1.2	Test conditions and test procedures	192
7.1.3	Uncertainty in measurements	192
7.1.4	Model to prototype conversion	192
7.2 Flue	ctuating quantities	193
7.2.1	Data acquisition and processing for measurement of fluctuating quantities	193
7.2.2	Pressure fluctuations	197
7.2.3	Shaft torque fluctuations	213
7.3 Axia	al and radial thrust	214
7.3.1	General	214
7.3.2	Hydraulic axial thrust	215
7.3.3	Radial thrust	223
7.4 Hyc	Iraulic loads on control components	226
7.4.1	General	226
7.4.2	Guide vane torque	227
7.4.3	Runner blade torque	233
7.4.4	Pelton needle force and deflector torque	237
7.5 Tes	ting in an extended operating range	241
7.5.1	General	241
7.5.2	Four guadrants	241
7.5.3	Operating modes (see Figure 116)	243
7.5.4	Scope of tests	244
7.5.5	Methods of testing in the extended operating range	246
7.6 Diff	erential pressure measurement in view of prototype index test	248
7.6.1	General	248
7.6.2	Purpose of test	249
7.6.3	Execution of test	249
7.6.4	Analysis of test results	249
7.6.5	Transposition to prototype conditions	250
7.6.6	Uncertainty	250
Annex A (info	mative) Dimensionless terms	251
Annex B (norr	, native) Physical properties, data	253
	mative) Cummerized test and coloulation precedure	200
Annex C (inio		201
C.1 Ger	neral	261
C.2 Agr	eements to be reached prior to testing	261
C.3 Mod	del, test facility and instrumentation	262
C.3.1	Model manufacture and dimensional checks	262
C.3.2	lest facility instrumentation and data acquisition system	262
C.4 Tes	ts and calculation of the model values	262
C.4.1	Test types	262
C.4.2	Measurement of the main quantities during the test	263
C.4.3	Uncertainty of the measured quantities	263
C.4.4	Calculation of the quantities related to the main hydraulic performance	263
C.4.5	Calculation of the dimensionless factors or coefficients and of the	262
C.4.6	Determination of δ_{ref} for the transposition of efficiency	264
C.4.7	Calculation of efficiency and power coefficients referred to ReM*	264
	, , , , , , , , , , , , , , , , , , ,	

- 6 -

C.4.8	8 Correction of the model-measured values taking into account the influence of cavitation	. 264
C.5	Calculation of prototype quantities	. 264
C.6	Plotting of model or prototype results	. 264
C.7	Comparison with the guarantees	. 265
C.8	Final protocol	. 265
C.9	Final test report	. 265
Annex D	(normative) The scale effect on hydraulic efficiency for reaction machines	. 266
D.1	Basic statements and assumptions	. 266
D.2	Efficiency transposition formulae	. 266
D.2.1	Derivation of the general formula for efficiency transposition	.266
D.2.2	2 Amount of relative scalable losses in the range of guaranteed efficiencies	. 267
D.2.3	3 Determination of the effect of scaling on the efficiency of the model	. 269
D.2.4	4 Determination of the formula for the transposition of efficiency from model to prototype	. 271
Annex E ((informative) Comparison of the hydraulic efficiency transposition methods of	
IEC 6019	3 and IEC 62097 for reaction machines	. 273
E.1	IEC 60193 transposition method	. 273
E.1.1	1 Applications	. 273
E.1.2	2 Limitations	. 273
E.2	IEC 62097 transposition method	. 274
E.2.1	1 Applications	. 274
E.2.2	2 Limitations	. 274
Annex F (account fi	(normative) Computation of the prototype runaway characteristics taking into riction and windage losses of the unit	. 275
Annex G separate	(informative) Example of determination of the best smooth curve: method of segments	. 276
G.1	General	.276
G.2	Principle of the method	.276
G.3	Choice of the minimum width of the intervals	.278
G.4	Determination of the intervals	.278
Annex H ((informative) Examples of analysis of sources of error and uncertainty n	.279
Н 1	General	270
H.2	Example of analysis of sources of error and of uncertainty evaluation in the measurement of a physical quantity.	270
Н 2 1	1 General	270
H 2 2	2 Frors arising during calibration	280
H 2 3	3 Frons arising during the tests	281
Н 3	Example of calculation of uncertainty due to systematic errors in the	. 201
11.0	determination of the specific hydraulic energy, mechanical runner/impeller	
	power and hydraulic efficiency	. 281
H.3.1	1 General	. 281
H.3.2	2 Discharge	. 282
H.3.3	3 Pressure	. 282
H.3.4	4 Specific hydraulic energy	. 282
H.3.5	5 Power	. 283
H.3.6	6 Hydraulic efficiency	. 283
H.4	Example of calculation of uncertainty due to systematic errors in the determination of the net positive suction specific energy	. 284

_	7	_
_		_

H.4.1	General	
H.4.2	Discharge	
H.4.3	Pressure	
H.4.4	Net positive suction specific energy	
Annex I (no	irmative) The scale effect on hydraulic efficiency for Pelton turbines	
1.1 0	jeneral	
1.Z C		200 288
Annex J (no	ormative) Analysis of random errors for a test at constant operating	200
conditions .		
J.1 G	General	
J.2 S	Standard deviation	
J.3 C	Confidence levels	
J.4 S	Student's <i>t</i> distribution	
J.5 N	Aaximum permissible value of uncertainty due to random errors	
J.6 E	example of calculation	
Annex K (n	ormative) Calculation of plant Thoma number $\sigma_{\rm pl}$	
K.1 E	Definition of $\sigma_{\sf pl}$, NPSE and NPSH	
K.2 [Data needed to calculate $\sigma_{\sf plc}$	
Annex L (in	formative) Flux diagram of specific hydraulic energy, flow and power	
Annex M (ir signals	nformative) Synchronous and asynchronous components of pressure	
Annex N (ir	formative) Natural frequency of the hydraulic system	
Annex O (ir	nformative) Calculation of axial force components	
0.1 0	General	
0.2 0	Calculating the force acting on the runner crown (F_2)	
0.2.1	General	
0.2.2	Pressure specific energy losses due to seal clearance	
O.2.3	Pressure specific energy losses through the centrifugal zones betwee the stationary and rotating parts	n 304
0.2.4	Pressure specific energy losses in a pressure relief/equilibrium pipe	
O.2.5	Additional specific energy losses	
0.3 0	Calculating the force acting on the runner band (F_3)	
Bibliograph	у	
Figure 1– S	chematic representation of a hydraulic machine	
Figure 2 – (Guide vane opening and angle	22
Figure 3 – I	Reference diameter and bucket width	24
Figure 4 – I	Determination of σ_0 and σ_1 for typical cavitation curves	29
Figure 5 – I	Reference level of machine	31
Figure 6 – I	Flux diagram for power and discharge	33
Figure 7 – I	Ilustration of some definitions related to oscillating quantities	36
Figure 8 – I application	Procedure for dimensional checks, comparison of results "steel to steel" a of tolerances for model and prototype	nd 51
Figure 9 – I	Example of spiral case and distributor dimensions to be checked	54
- Figure 10 -	Example of draft tube dimensions to be checked	54

- 8 -

Figure 11 – Example of the dimensions to be checked on a bulb unit	55
Figure 12 – Example of the dimensions to be checked on the runner/impeller of a radial flow machine	56
Figure 13 – Runner/impeller of radial flow machine: examples of locations for blade profile measuring sections for templates or measuring points for CMM	57
Figure 14 – Runner/impeller of radial flow machine: check of outlet width and blade profiles by means of templates as illustrated on a Francis runner	57
Figure 15 – Runner/impeller of radial flow machine: check of inlet and outlet widths between blades (example of a pump-turbine runner)	58
Figure 16 – Runner/impeller of axial flow machine: example of locations for blade profile measuring sections for templates or measuring points for CMM	58
Figure 17 – Runner/impeller of axial flow machine: definition of blade adjustment and of blade profile tolerances	58
Figure 18 – Pelton turbine: example of dimensions to be checked on the distributor and the housing of vertical and horizontal shaft machines	59
Figure 19 – Pelton turbine: example of dimensions to be checked on the buckets and nozzles	60
Figure 20 – Definition of waviness and surface roughness	72
Figure 21 – Low specific hydraulic energy turbine example of recommended maximum surface roughness values on the runner blades (pressure side and suction side)	73
Figure 22 – Relation between the setting level z_{r} of a Francis turbine and the cavitation reference level z_{c}	78
Figure 23 – Dependence of σ values on level z for model and prototype	78
Figure $24 - Acceleration due to gravity a (m, s-2)$	98
T igure 24 – Acceleration due to gravity g (in $\cdot 3$)	
Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³)	. 101
Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³) Figure 26 – Time multiplexing data acquisition system	. 101 . 106
Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system	. 101 . 106 . 107
Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay	. 101 . 106 . 107 . 108
Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics	. 101 . 106 . 107 . 108 . 109
Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints	. 101 . 106 . 107 . 108 . 109 . 111
Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps	. 101 . 106 . 107 . 108 . 109 . 111 . 120
Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold.	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121
Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123
Figure 24 – Acceleration due to gravity g (in 43 °) Figure 25 – Density of distilled water ρ_{Wd} (kg \cdot m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up)	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126
Figure 24 – Acceleration due to gravity g (in 4 s ⁻) Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up)	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127
Figure 24 – Acceleration due to gravity g (in r^3) Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up) Figure 36 – Stilling well.	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127 . 130
Figure 24 – Acceleration due to gravity g (in 3°) Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold. Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up) Figure 36 – Stilling well. Figure 37 – Point and hook gauges.	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127 . 130 . 131
Figure 24 – Acceleration due to gravity g (in r_{3}^{-}) Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up) Figure 37 – Point and hook gauges Figure 38 – Example showing main elevations, heights and reference levels of the test rig and model machine	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127 . 130 . 131 . 134
Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up) Figure 37 – Point and hook gauges Figure 38 – Example showing main elevations, heights and reference levels of the test rig and model machine Figure 39 – Determination of specific hydraulic energy through differential pressure	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127 . 130 . 131 . 134 . 137
Figure 24 – Acceleration due to gravity g (in * 3) Figure 25 – Density of distilled water ρ_{Wd} (kg · m ⁻³) Figure 26 – Time multiplexing data acquisition system Figure 27 – Bus operated data acquisition system Figure 28 – Time delay Figure 29 – Typical low-pass filter attenuation characteristics Figure 30 – Different measurement chains and their recommended checkpoints Figure 31 – Examples of pressure taps Figure 32 – Types of pressure manifolds: a) with separate connecting lines to manifold and b) with ring manifold Figure 33 – Examples of experimental setup of liquid column manometers Figure 34 – Dead weight manometer with compensation by pressure or force transducer (example of experimental set-up) Figure 35 – Pressure weighbeam (example of experimental set-up) Figure 37 – Point and hook gauges Figure 38 – Example showing main elevations, heights and reference levels of the test rig and model machine Figure 40 – Determination of specific hydraulic energy through differential pressure measuring instrument	. 101 . 106 . 107 . 108 . 109 . 111 . 120 . 121 . 123 . 126 . 127 . 130 . 131 . 134 . 137 . 138

Figure 42 – Pelton turbines with vertical axis: determination of specific hydraulic energy of the machine	140
Figure 43 – Pelton turbines with horizontal axis: determination of specific hydraulic energy of the machine	141
Figure 44 – Low-head machines: determination of specific hydraulic energy of the machine using free water levels	142
Figure 45 – Determination of net positive suction energy <i>NPSE</i> and net positive suction head <i>NPSH</i>	143
Figure 46 – Balance arrangement	. 146
Figure 47 – Balance arrangement with gear	. 147
Figure 48 – Balance arrangement with two separate frames	. 147
Figure 49 – Arrangement with machine bearings and seals not in balance	. 147
Figure 50 – Arrangement with lower bearing and seal not in balance	. 148
Figure 51 – Arrangement with intermediate bearing and seal not in balance	. 148
Figure 52 – Arrangement using a torquemeter	. 148
Figure 53 – Arrangement using a torquemeter with machine bearings and seals in balance	149
Figure 54 – Arrangement using a torquemeter with machine bearings and seals not in balance	. 149
Figure 55 – Choosing the appropriate transposition method	. 153
Figure 56 – Single-regulated (Francis) model turbine: performance hill diagram (discharge factor versus speed factor)	155
Figure 57 – Single-regulated (Francis) model turbine: performance hill diagram (energy coefficient versus discharge coefficient)	155
Figure 58 – Double-regulated (Kaplan) model turbine: performance hill diagram	. 156
Figure 59 – Single-regulated (radial) model pump: performance diagram	. 156
Figure 60 – Double-regulated model pump: performance diagram	. 157
Figure 61 – Pelton model turbine: performance hill diagram (example for a six-nozzle machine)	157
Figure 62 – Single-regulated (radial) model pump-turbine: general four-quadrant diagram	158
Figure 63 – Reaction machines: procedure for calculating test results in view of comparison with guarantees	159
Figure 64 – Single-regulated turbine: three-dimensional surface of hydraulic efficiency and curves of performance at E_{nD} constant	161
Figure 65 – Single-regulated pump: performance curves	. 162
Figure 66 – Double-regulated turbine: performance curves at E_{nD} constant	163
Figure 67 – Double-regulated pump: performance curves at <i>E</i> _{nD} constant	. 164
Figure 68 – Non-regulated turbine: performance curves	. 165
Figure 69 – Non-regulated pump: performance curves	. 166
Figure 70 – Efficiency curve correction in order to take into account cavitation influence (e.g. tubular machines at overload operation)	167
Figure 71 – Francis model turbine: cavitation curves	. 167
Figure 72 – Model pump: cavitation curves	. 167
Figure 73 – Francis model turbine cavitation curves: examples of limits for application of transposition formula	169
Figure 74 – Runaway curves for a single-regulated turbine (Francis)	. 172

- 10 -

Figure 75 – Runaway curves for a single-regulated turbine (six-nozzle Pelton)	. 172
Figure 76 – Runaway speed determined by extrapolation: example for a single- regulated turbine (Francis)	. 172
Figure 77 – Influence of Thoma number on runaway speed and discharge of a single- regulated turbine (Francis)	. 173
Figure 78 – Influence of the Thoma number on runaway speed and discharge of a double-regulated turbine (Kaplan)	. 174
Figure 79 – Influence of the Thoma number on the off-cam runaway curves of a double-regulated turbine (Kaplan)	. 174
Figure 80 – Example of calibration curve	. 178
Figure 81 – Single-regulated machine	. 184
Figure 82 – Double-regulated machine	. 184
Figure 83 – Single-regulated turbine: comparison between guarantees and measurements	. 185
Figure 84 – Non-regulated turbine: comparison between guarantees and measurements	. 186
Figure 85 – Non-regulated pump: comparison between guarantees and measurements	. 187
Figure 86 – Francis turbine runaway speed and discharge curves: comparison between guarantees and measurements	. 189
Figure 87 – Model turbine cavitation curve and comparison with the guarantee on the influence of the cavitation on the efficiency	. 190
Figure 88 – Typical data acquisition system	. 194
Figure 89 – Frequency response of analogue anti-aliasing filter	. 195
Figure 90 – Suggested locations of transducers	. 200
Figure 91 – Pump diagram with exploration paths	. 202
Figure 92 – Turbine hill-chart with exploration paths	. 203
Figure 93 – Normal pump mode operation of an $n_{QE} = 0,102$ pump-turbine model	. 205
Figure 94 – Zero discharge operation (10 % guide vane opening) of an $n_{QE} = 0,102$ pump-turbine model	205
Figure 95 – Part load operation of an $n_{QE} = 0,321$ Francis turbine model: Q_{nD}/Q_{nDopt}	206
= 0.719	. 200
$Q_{nD}/Q_{nDopt} = 0,764$. 207
Figure 97 – Full load operation of an $n_{QE} = 0,173$ Francis turbine model: $Q_{nD}/Q_{nDopt} = 1,218$. 208
Figure 98 – Example of waterfall diagram of pressure fluctuations in the draft tube of a Francis turbine, transducer p ₁	. 209
Figure 99 – Example of summarized diagram of pressure fluctuations in the draft tube of a Francis turbine, transducer p_2	. 210
Figure 100 – Interaction of the external system with sources of pressure fluctuations from the hydraulic machine	.211
Figure 101 – Definition of coordinate system	. 214
Figure 102 – Individual elements of axial force acting on a radial machine	.216
Figure 103 – Typical testing arrangement for axial thrust measurement	.218
Figure 104 – Typical calibration arrangement for axial thrust measurement	.219

-	1	1	—
---	---	---	---

Figure 105 – Axial force factor versus discharge factor at different constant specific hydraulic energies in pump mode	221
Figure 106 – Axial force factor versus speed factor measured at different guide vane openings in the four quadrants of a pump-turbine	221
Figure 107 – Typical arrangements for radial thrust measurement (horizontal or vertical shaft)	224
Figure 108 – Design examples for torque measuring guide vanes	228
Figure 109 – Guide vane torque factor versus guide vane angle measured at different constant specific hydraulic energies in turbine mode	230
Figure 110 – Guide vane torque factor versus guide vane angle measured at different constant specific hydraulic energies in pump mode	231
Figure 111 – Guide vane torque factor versus speed factor measured at different constant guide vane angles in the four quadrants of a pump-turbine	231
Figure 112 – Example for runner blade torque measuring arrangement using telemetry	234
Figure 113 – Performance and hydraulic runner blade torque characteristics of an axial turbine measured at one constant runner blade angle β and various constant guide	226
Valle angles α	230
Figure 114 – Petton needle force factor as a function of relative needle stroke	240
Figure 115 – Example of four quadrants operation of a radial-type pump-turbine	
Figure 116 – Chart inustrating the various operating modes	244
Figure 117 – S-shape characteristics in turbine brake mode	247
range	247
Figure 119 – Example of graphical representation of index test data	250
Figure D.1 – Efficiency change in hydraulically similar operating conditions A and B having different <i>Re</i> values	267
Figure D.2 – Variation of relative scalable losses	268
Figure D.3 – Transposition curve for model efficiency using best efficiency point	270
Figure D.4 – Efficiency increase from constant <i>Re</i> _{M*} to constant <i>Re</i> _P	271
Figure D.5 – Efficiency increase from different <i>Re</i> _M to constant <i>Re</i> _P	272
Figure F.1 – Single-regulated turbine: determination of the maximum runaway speed of the prototype taking into account the friction and windage losses of the unit	275
Figure G.1 – Principle of the method of separate segments	277
Figure G.2 – Example of determination of intervals	277
Figure I.1 – Influence of Froude number	287
Figure I.2 – Influence of Weber number	288
Figure I.3 – Influence of Reynolds number	288
Figure K.1 – Definition for determination of net positive suction energy, <i>NPSE</i> , and net positive suction head, <i>NPSH</i> , of a prototype machine ($E_{LS} \neq 0$)	293
Figure L.1 – Turbine	296
Figure L.2 – Pump	297
Figure M.1 – a) Representation of asynchronous pressure pulsation and location of pressure transducers, and b) synchronous and c) asynchronous parts of the pressure signal.	300
Figure O.1 – Crown seal clearance	304
Figure O.2 – Crown radius	305
- Figure O.3 – Pressure relief pipe	306

– 12 –

Figure O.4 – Runner band seal	307
Table 1 – Permissible maximum deviations	68
Table 2 – Maximum recommended prototype surface roughness Ra	73
Table 3 – Similitude numbers	74
Table 4 – Similitude requirements for various types of model tests	76
Table 5 – Minimum values for model size and test parameters	82
Table 6 – Coefficients of the Herbst and Roegener formula	100
Table 7 – Minimum test specific hydraulic energy	102
Table 8 – Nomenclature for Figure 46 to Figure 54	146
Table 9 – Variables defining the operating point of a machine	154
Table 10 – Summary of errors that determine total measurement uncertainty	179
Table 11 – Definition of individual force elements of axial thrust	217
Table 12 – Non-hydraulic forces influencing radial thrust measurement	225
Table 13 – Definition of quadrants and operating modes	242
Table B.1 – Acceleration due to gravity $g (m \cdot s^{-2})$	253
Table B.2 – Density of distilled water $ ho_{ m Wd}$ (kg·m $^{-3}$) (1 of 2)	254
Table B.3 – Kinematic viscosity of distilled water $v (m^2 \cdot s^{-1})$	256
Table B.4 – Vapour pressure of distilled water p_{Va} (Pa)	257
Table B.5 – Density of dry air $ ho_{a}$ (kg·m ⁻³)	258
Table B.6 – Ambient pressure p _{amb} (Pa)	259
Table B.7 – Density of mercury $ ho_{ m Hg}$ (kg·m $^{-3}$)	260
Table D.1 – V _{ref} values	269
Table I.1 – Numerical data for surface tension σ^*	287
Table J.1 – Confidence levels	290
Table J.2 – Values of Student's <i>t</i>	291
Table J.3 – Computation of the estimated standard deviation and the uncertainty for eight observations	292
Table K.1 – Summary of calculated $\sigma_{\sf plc}$ values and other relevant data	295

– 13 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – MODEL ACCEPTANCE TESTS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60193 has been prepared by IEC technical committee 4: Hydraulic turbines.

This third edition cancels and replaces the second edition published in 1999. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) update to methods/measuring tools currently used for checking dimensions on both model and prototype;
- b) update to requirements of accuracy in the dimensional check procedure as a result of new technology;

- 14 -

IEC 60193:2019 © IEC 2019

- c) merging of tables/sections with redundant information in dimension check in 5.2;
- d) update to methods of measuring discharge;
- e) update to pressure fluctuation methods and terminology;
- f) specification of measuring times for accurate pressure fluctuation analyses in the model;
- g) redefine definition for the transposition of pressure fluctuations to prototype;
- h) update to surface waviness requirements in prototype;
- i) redefining methods/references in clause on cavitation nuclei content (5.7.3.2.2);
- j) update to 7.3 and review of methods on radial thrust measurements;
- k) update to 7.4 (Hydraulic loads on control components);
- I) update and develop methodology in 7.5 for testing in the extended operating range;
- m) update to 7.6 concerning index testing;
- n) update to methods for measuring roughness;
- o) updates to references;
- p) updates to figures;
- q) revision of sigma definition;
- r) reference to new method of transposition in accordance with IEC 62097.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
4/371/FDIS	4/373/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

– 15 –

HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – MODEL ACCEPTANCE TESTS

1 Scope

This document applies to laboratory models of any type of impulse or reaction hydraulic turbine, storage pump or pump-turbine.

This document applies to models of prototype machines either with unit power greater than 5 MW or with reference diameter greater than 3 m. Full application of the procedures herein prescribed is not generally justified for machines with smaller power and size. Nevertheless, this document may be used for such machines by agreement between the purchaser and the supplier.

In this document, the term "turbine" includes a pump-turbine operating as a turbine and the term "pump" includes a pump-turbine operating as a pump.

This document excludes all matters of purely commercial interest, except those inextricably bound up with the conduct of the tests.

This document is concerned with neither the structural details of the machines nor the mechanical properties of their components, so long as these do not affect model performance or the relationship between model and prototype performances.

This document covers the arrangements for model acceptance tests to be performed on hydraulic turbines, storage pumps and pump-turbines to determine if the main hydraulic performance contract guarantees (see 4.2) have been satisfied.

It contains the rules governing test conduct and prescribes measures to be taken if any phase of the tests is disputed.

The main objectives of this document are:

- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- to define the extent, content and structure of the final report.

The guarantees can be given in one of the following ways:

- guarantees for prototype hydraulic performance, computed from model test results considering scale effects;
- guarantees for model hydraulic performance.

- 16 -

IEC 60193:2019 © IEC 2019

Moreover, additional performance data (see 4.4) can be needed for the design or the operation of the prototype of the hydraulic machine. Contrary to the requirements of Clauses 4 to 6 related to main hydraulic performance, the information of these additional data given in Clause 7 is considered only as recommendation or guidance to the user (see 7.1).

It is particularly recommended that model acceptance tests be performed if the expected field conditions for acceptance tests (see IEC 60041:1991) would not allow the verification of guarantees given for the prototype machine.

A transposition method taking into account the model and prototype wall surface roughness for the performance conversion on pump-turbines, Francis turbines, and axial machines is described in IEC 62097. This method requires model and prototype surface roughness data and is takes into account the shift in $n_{\rm ED}$, $Q_{\rm ED}$ and $P_{\rm ED}$ factors for determining the transposition of efficiency between model and prototype. However, in the case of Francis machines with semispiral casing and axial machines, the transposition method has not been fully validated due to a lack of data. In addition, IEC 62097 does not apply to storage pumps, Pelton turbines, and Dériaz. Therefore, for these and otherwise specifically agreed upon cases where hydraulically smooth flow conditions are assumed on the model and the prototype, the transposition formula and procedure given in Annex D and Annex I can be applied. Applications and limitations of both this document and IEC 62097 transposition methods are discussed in Annex E.

The method for performance conversion from model to prototype needs to be clearly defined in the main hydraulic performance contract.

This document may also be applied to model tests for other purposes, i.e. comparative tests and research and development work.

If model acceptance tests have been performed, field tests can be limited to index tests (see IEC 60041:1991).

If a contradiction is found between this document and any other document, this document prevails.

– 17 –

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62097:2009, Hydraulic machines, radial and axial – Performance conversion method from model to prototype

ISO 2186:2007, Fluid flow in closed conduits – Connections for pressure signal transmissions between primary and secondary elements

ISO 2533:1975, Standard atmosphere

ISO 4185:1980, Measurement of liquid flow in closed conduits – Weighing method

ISO 4287:1997, Geometrical Product Specifications (GPS) – Surface texture: Profile method – terms, definitions and surface texture parameters

ISO 8316:1987, Measurement of liquid flow in closed conduits – Method by collection of the liquid in a volumetric tank

- 312 -

IEC 60193:2019 © IEC 2019

SOMMAIRE

A١	/ANT-P	ROPOS	. 323
1	Doma	aine d'application	325
2	2 Références normatives		326
3	Term	es, définitions, symboles et unités	. 327
	3.1	Généralités	327
	3.2	Terminologie générale	. 327
	3.3	Unités	.329
	3.4	Définitions des termes, symboles et unités	. 329
	3.4.1	Liste des termes et définitions par sujet	. 329
	3.4.2	Indices et signes représentatifs	. 330
	3.4.3	Termes géométriques	. 332
	3.4.4	Grandeurs et propriétés physiques	. 334
	3.4.5	Termes relatifs au débit, à la vitesse d'écoulement et à la vitesse de rotation	.335
	3.4.6	Termes relatifs à la pression	. 336
	3.4.7	Termes relatifs à l'énergie massique	. 336
	3.4.8	Termes relatifs à la hauteur géométrique et à la hauteur de charge	. 339
	3.4.9	Termes relatifs à la puissance et au couple	. 341
	3.4.1	0 Termes relatifs au rendement	. 343
	3.4.1	1 Termes généraux relatifs aux grandeurs fluctuantes	. 343
	3.4.1	2 Termes relatifs à la mécanique des fluides et à l'effet d'échelle ^{a)}	.346
	3.4.1	3 Termes adimensionnels	. 347
	3.4.1	4 Termes relatifs aux données complémentaires de fonctionnement	.348
4	Natu	re et étendue des garanties relatives au fonctionnement hydraulique	.349
	4.1	Généralités	.349
	4.1.1	Données du projet et coordination	.349
	4.1.2	Définition des garanties de performances hydrauliques	.349
	4.1.3	Garanties portant sur des grandeurs liées	.350
	4.1.4	Forme des garanties	.350
	4.2	Garanties principales de performances hydrauliques vérifiables par un essai	250
	121	Grandeurs garanties pour toute machine	350
	4.2.1	Annlications particulières	351
	43	Garanties non vérifiables nar des essais sur modèle	353
	431	Garanties sur l'érosion de cavitation	353
	432	Garanties sur la vitesse et la pression instantanées maxima maximorum	353
	4.3.3	Garanties de bruit et de vibrations	353
	4.4	Données complémentaires de fonctionnement	353
5	Exéc	ution des essais	. 354
	5 1	Exigences imposées à l'installation d'essai et au modèle	354
	5.1.1	Choix du laboratoire	354
	5.1.2	Installation d'essai	.354
	5.1.3	Exigences concernant le modèle	.355
	5.2	Contrôle dimensionnel du modèle et du prototype	.357
	5.2.1	Généralités	.357
	5.2.2	Explication des termes utilisés pour le modèle et le prototype	358
	5.2.3	But du contrôle dimensionnel	.358

	5.2.4	Règles générales	358
	5.2.5	Procédure	359
	5.2.6	Application à différents types de machines	360
	5.2.7	Méthodes	360
	5.2.8	Précisions des mesures	369
	5.2.9	Dimensions à contrôler sur le modèle et le prototype	370
	5.2.10	Écarts maximaux de similitude géométrique admissibles entre le	075
	5044	prototype et le modele pour les turbines, pompes et pompes-turbines	375
	5.2.11	Undulation et rugosite de surface	379
	5.3 Sim	llitude hydraulique	382
	5.3.1	Exigences theoriques fondamentales et parametres de similitude	382
	5.3.2	Conditions de similitude hydraulique utilisees dans le present document	382
	5.3.3	Similitude requise pour les différents types d'essai sur modèle	383
	5.3.4	Similitude de Reynolds	384
	5.3.5	Similitude de Froude	385
	5.3.6	Autres conditions de similitude	388
	5.4 Con	ditions d'essai	389
	5.4.1	Détermination des conditions d'essai	389
	5.4.2	Valeurs minimales de la taille du modèle et conditions d'essai à	200
	513	Stabilité et fluctuations pendant les mesurages	301
	54.5	Péalage du point de fonctionnement	201
	5.4.4 5.5 Moo	Reglage du point de fonctionnement	201
	5.5 MOU		201
	5.5.1 5.5.2	linghostions et étalennages	204
	5.5.2	Extention des sessie	394
	5.5.3	Execution des essais	390
	5.5.4	Demost d'accei finel	401
	5.5.5	Rapport d'essai final	402
	5.6 Intro	oduction aux methodes de mesure	403
	5.6.1	Generalites	403
	5.6.2	Mesures liees aux garanties principales de performances hydrauliques	403
	5.6.3	Mesures liées à des données complémentaires	405
	5.6.4	Acquisition et traitement des données	405
	5.7 Prop	priétés physiques	405
	5.7.1	Généralités	405
	5.7.2	Accélération due à la pesanteur	406
	5.7.3	Propriétés physiques de l'eau	406
	5.7.4	Propriétés physiques de l'atmosphère	412
	5.7.5	Masse volumique du mercure	412
6	Performa	nces hydrauliques principales: méthodes de mesurage et résultats	413
	6.1 Acq	uisition et traitement des données	413
	6.1.1	Vue d'ensemble	413
	6.1.2	Spécifications générales	413
	6.1.3	Acquisition des données	413
	6.1.4	Spécification des composants	415
	6.1.5	Contrôle du système d'acquisition des données	418
	6.2 Mes	urage du débit	420
	6.2.1	Généralités	420
	6.2.2	Choix de la méthode de mesurage	420

- 314 -

6.2.3	Exactitude de mesure	421
6.2.4	Méthodes primaires	
6.2.5	Méthodes secondaires	
6.3 Me	surage de la pression	
6.3.1	Généralités	426
6.3.2	Choix de la section de mesure de la pression	
6.3.3	Prises de pression et lignes de raccordement	
6.3.4	Appareillage de mesure de la pression	
6.3.5	Étalonnage des appareils de mesure de pression	
6.3.6	Mesures de vide	436
6.3.7	Incertitude sur les mesures de pression	
6.4 Me	surage du niveau libre (voir aussi ISO 4373)	437
6.4.1	Généralités	437
6.4.2	Choix des sections de mesurage du niveau libre	
6.4.3	Nombre des points de mesurage dans une section	438
6.4.4	Méthodes de mesure	438
6.4.5	Incertitudes sur les mesures de niveau libre	
6.5 Dét	ermination de <i>E</i> et <i>NPSE</i>	
6.5.1	Généralités	
6.5.2	Détermination de l'énergie hydraulique massique E	
6.5.3	Formules simplifiées pour <i>E</i>	
6.5.4	Détermination de l'énergie massique nette à l'aspiration NPSE	
6.6 Me	surage du couple sur l'arbre	452
6.6.1	Généralités	452
6.6.2	Méthodes de mesurage du couple	452
6.6.3	Méthodes pour absorber ou fournir la puissance	
6.6.4	Schémas de montage	453
6.6.5	Contrôle du système	458
6.6.6	Étalonnage	458
6.6.7	Incertitude sur la mesure du couple (pour un intervalle de confiance de	•
	95 %)	459
6.7 Me	surage de la vitesse de rotation	
6.7.1	Généralités	460
6.7.2	Méthodes de mesurage de la vitesse	
6.7.3	Contrôle	
6.7.4	Incertitude de mesure	
6.8 Cal	cul et présentation des résultats d'essai	
6.8.1	Généralités	
6.8.2	Puissance, débit et rendement dans le domaine garanti	
6.8.3	Calcul de la vitesse et du débit d'emballement stabilisé	
6.9 Ana	alyse des erreurs	484
6.9.1	Définitions	
6.9.2	Détermination des incertitudes lors des essais sur modèle	
6.10 Cor	nparaison avec les garanties	
6.10.1	Généralités	490
6.10.2	Courbe d'interpolation et bande d'incertitude totale	491
6.10.3	Puissance, débit et/ou énergie hydraulique massique et rendement dans le domaine garanti	492
6.10.4	Vitesse et débit d'emballement	

6.10.	5 Garanties de cavitation	497
7 Donn	ées complémentaires de fonctionnement – Méthodes de mesurage et	
résul	tats	499
7.1	Introduction au mesurage des données complémentaires	499
7.1.1	Généralités	499
7.1.2	Conditions d'essai et mode opératoire	500
7.1.3	Incertitude de mesure	500
7.1.4	Transposition du modèle au prototype	500
7.2	Grandeurs fluctuantes	501
7.2.1	Acquisition et traitement des données pour le mesurage des grandeurs fluctuantes	501
7.2.2	Fluctuations de pression	505
7.2.3	Fluctuations de couple sur l'arbre	520
7.3	Poussées axiale et radiale	521
7.3.1	Généralités	521
7.3.2	Poussée axiale hydraulique	
7.3.3	Poussée radiale	530
7 4	Efforts hydrauliques sur les organes de réglage	533
741	Généralités	533
742	Couple sur les directrices	534
743	Couple sur les pales de roue	540
7.1.0	Force sur le pointeau et couple sur le déflecteur des turbines Pelton	544
7.5	Essais dans un domaine de fonctionnement élargi	548
751	Généralités	548
7.5.2	Quatre quadrants	548
7.5.3	Modes de fonctionnement (voir Figure 116)	550
7.5.4	Obiet des essais	551
7.5.5	Modalités d'essai dans un domaine de fonctionnement élargi	553
7.6	Mesures de pression différentielle en vue des essais indiciels du prototype	555
7.0	Généralités	555
7.0.1	But de l'essai	556
7.0.2	Evécution de l'essai	556
7.0.5	Analyse des résultats d'essai	556
7.0.4	Transposition aux conditions du prototype	557
7.0.5		557
۲.0.0 ۸ مممر	(informative) Termes adimensionnels	558
	(normative) Preniétás physiques, velours pumériques	560
	(informative) Prophetes physiques, valeurs numeriques	500
Annexe C	(informative) Procedure resumee diessariet de calcul	500
	Generalites	508
0.2	Accords a obtenir avant l'essai	568
0.3	Instrumentation de l'Installation d'essai et du modele	569
0.3.1	Construction du modele et controles dimensionnels	569
0.3.2	données	569
C.4	Essais et calcul des grandeurs relatives au modèle	569
C.4.1	Types d'essais	569
C.4.2	Mesurage des grandeurs principales pendant les essais	570
C.4.3	Incertitude sur les grandeurs mesurées	570
C.4.4	Calcul des grandeurs liées aux performances hydrauliques principales	570

– 316 –

C.4.5	5 Calcul des facteurs ou coefficients adimensionnels et du nombre de Thoma	570
C.4.6	Détermination de $\delta_{ m ref}$ pour la transposition du rendement	571
C.4.7	Calcul du rendement et du coefficient de puissance transposes à <i>Re</i> _{M*} .	571
C.4.8	Correction des valeurs mesurées sur modèle pour tenir compte de la cavitation	571
C 5	Calcul des grandeurs relatives au prototype	571
C.6	Tracé des résultats du modèle ou du prototype	571
C.7	Comparaison aux garanties	572
C.8	Compte rendu final	572
C.9	Rapport d'essai final	572
Annexe D réaction	(normative) L'effet d'échelle sur le rendement hydraulique des machines à	573
D.1	Fondements et hypothèses	573
D.2	Les formules de transposition du rendement	573
D.2.1	Etablissement de la formule générale pour la transposition du rendement	573
D.2.2	Proportion des pertes relatives transposables dans le domaine de garantie du rendement	574
D.2.3	Détermination de l'effet d'échelle sur le rendement du modèle	576
D.2.4	Détermination de la formule de transposition du rendement du modèle au prototype	578
Annexe E hydrauligi	(informative) Comparaison des méthodes de transposition du rendement Je des machines à réaction dans l'IEC 60193 et l'IEC 62097	580
, , F 1	Méthode de transposition de l'IEC 60193	580
E.1.1	Applications	
E.1.2		580
E.2	Méthode de transposition de l'IEC 62097	581
E.2.1	Applications.	581
E.2.2	Limites	581
Annexe F tenant co	(normative) Calcul des caractéristiques d'emballement du prototype en mpte des pertes par frottement et par ventilation du groupe	582
Annexe G méthode	(informative) Exemple de détermination de la meilleure courbe lisse: des segments séparés	584
G.1	Généralités	584
G.2	Principe de la méthode	584
G.3	Choix de la largeur minimale des intervalles	586
G.4	Détermination des intervalles	586
Annexe H l'incertitue	(informative) Exemples d'analyse des sources d'erreur et d'évaluation de de	587
H.1	Généralités	587
H.2	Exemple d'analyse des sources d'erreur et d'évaluation des incertitudes sur la mesure d'une grandeur physique	587
H.2.1	Généralités	587
H.2.2	2 Erreurs survenant durant l'étalonnage	588
H.2.3	Erreurs survenant durant les essais	589
H.3	Exemple de calcul de l'incertitude due aux erreurs systématiques sur la détermination de l'énergie hydraulique massique, de la puissance	
	mécanique à la roue et du rendement hydraulique	589
H.3.1	Généralités	589
H.3.2	2 Débit	590

H.3.3	Pression	590
H.3.4	Energie hydraulique massique	590
H.3.5	Puissance	591
H.3.6	Rendement hydraulique	591
H.4	Exemple de calcul de l'incertitude due aux erreurs systématiques sur la détermination de l'énergie massique nette à l'aspiration	592
H.4.1	Généralités	592
H.4.2	Débit	592
H.4.3	Pression	592
H.4.4	Energie massique nette à l'aspiration	592
Annexe I	(normative) L'effet d'échelle sur le rendement des turbines Pelton	594
I.1	Généralités	594
1.2	Conditions de similitude	594
1.3	Formule de transposition	597
Annexe J conditions	(normative) Analyse des erreurs aléatoires lors d'un essai dans des de fonctionnement constantes	598
J.1	Généralités	598
J.2	Ecart-type	598
J.3	Niveaux de confiance	599
J.4	Loi de <i>t</i> de Student	599
J.5	Valeur maximale admissible de l'incertitude due aux erreurs aléatoires	600
J.6	Exemple de calcul	601
Annexe K	(normative) Calcul du nombre de Thoma d'installation σ_{pl}	602
K 1	Définition de c. NPSE et NPSH	602
K. 1		
K.2	Donnees necessaires pour le calcul de $\sigma_{\rm plc}$	603
Annexe L de débit e	(informative) Diagramme du bilan détaillé d'énergie hydraulique massique, t de puissance	605
Annexe M pression	(informative) Composantes synchrones et asynchrones des signaux de	608
Annexe N	(informative) Fréquence propre du système hydraulique	610
Annexe O	(informative) Calcul des composantes de la poussée axiale	611
0 1	Généralités	611
0.1	Calcul des forces s'exercant sur le plafond de roue (F_0)	611
0.2		
0.2.1	Generalites	
0.2.2	Perte d'energie massique due au jeu des labyrintnes	611
0.2.3	parties fixes et tournantes	
0.2.4	Pertes d'énergie massique dans une tuvauterie d'équilibrage	614
0.2.5	Pertes d'énergie massique additionnelles	615
0.3	Calcul des forces s'exerçant sur la ceinture de roue (F_3)	616
Bibliograp	hie	
9. ap		
Figure 1 -	Représentation schématique d'une machine hydraulique	331
Figure 2 -	Ouverture et angle du distributeur	331
Figure 3 -	Diamètre de référence et largeur d'auget	333
- Figure 4 -	Détermination de σ_0 et σ_1 pour des courbes de cavitation typiques	338
J		

- 318 -

Figure 6 – Diagramme du bilan de puissance et de débit	12
Figure 7 – Illustration de quelques définitions relatives aux grandeurs fluctuantes	15
Figure 8 – Procédure pour le contrôle dimensionnel, la comparaison des résultats "métal à métal" et l'application des tolérances au modèle et au prototype35	59
Figure 9 – Exemple des dimensions à contrôler sur une bâche spirale et un distributeur 36	32
Figure 10 – Exemple des dimensions à contrôler sur un aspirateur	32
Figure 11 – Exemple des dimensions à contrôler sur un groupe bulbe	33
Figure 12 – Exemple des dimensions à contrôler sur la roue d'une machine radiale	34
Figure 13 – Roue de machine radiale: exemples des positions des sections du profil de l'aube pour des gabarits ou des points de contrôle de MMT	35
Figure 14 – Roue de machine radiale: contrôle de la largeur de sortie et du profil des au moyen de gabarits (exemple d'une roue de turbine Francis)	35
Figure 15 – Roue de machine radiale: contrôle des largeurs de sortie et d'entrée entre deux aubes (exemple d'une roue de pompe-turbine)	36
Figure 16 – Roue de machine axiale: exemples des positions des sections du profil de l'aube pour des gabarits ou des points de contrôle de MMT	36
Figure 17 – Roue de machine axiale: définition de l'ajustement des pales et de la tolérance sur leur profil	36
Figure 18 – Turbine Pelton: exemple de dimensions à contrôler sur le distributeur et sur le bâti de machine à axe vertical et horizontal	37
Figure 19 – Turbine Pelton: exemple de dimensions à contrôler sur les augets et les injecteurs	38
Figure 20 – Définition de l'ondulation et de la rugosité de surface	30
Figure 21 – Exemple des valeurs de rugosité de surface maximale recommandées sur la surface de l'aube (intrados et extrados) pour une turbine de faible énergie hydraulique massique	31
Figure 22 – Relation entre le niveau de référence $z_{\rm f}$ d'une turbine Francis et son niveau de référence de cavitation $z_{\rm c}$	36
Figure 23 – Variation de σ en fonction du niveau z pour le modèle et le prototype	36
Figure 24 – Accélération due à la pesanteur q (m \cdot s ⁻²)40)6
Figure 25 – Masse volumique de l'eau distillée $\rho_{\rm wd}$ (kg · m ⁻³))9
Figure 26 – Système d'acquisition par multiplexage séguentiel	14
Figure 27 – Système d'acquisition par hus	15
Figure 28 – Retard (déphasage) 41	16
Figure 29 – Exemple des caractéristiques d'atténuation d'un filtre passe-bas	17
Figure 30 – Différentes chaînes de mesure et localisation de points de contrôle recommandés	19
Figure 31 – Exemples de prises de pression	28
Figure 32 – Types de collecteurs de pression: a) avec lignes individuelles de raccordement au collecteur et b) avec collecteur annulaire42	29
Figure 33 – Exemple de montage expérimental de manomètre à colonne liquide43	31
Figure 34 – Manomètre à poids avec compensation par transducteur de pression ou de force (exemple de montage expérimental)43	34
Figure 35 – Balance de pression (exemple de montage expérimental)43	35
Figure 36 – Puits de tranquillisation	38
Figure 37 – Limnimètre à pointe ou à crochet43	39

Figure 39 – Détermination de l'énergie hydraulique massique à l'aide d'un manomètre différentiel
Figure 40 – Détermination de l'énergie hydraulique massique de la machine par mesure séparée des pressions effectives
Figure 41 — Détermination de l'énergie hydraulique massique de la machine par
mesure séparée des pressions à l'aide de manomètres à colonne d'eau
Figure 42 – Turbines Pelton à axe vertical: détermination de l'énergie hydraulique massique de la machine
Figure 43 – Turbines Pelton à axe horizontal: détermination de l'énergie hydraulique massique de la machine
Figure 44 – Machines de basse chute: détermination de l'énergie hydraulique massique de la machine à partir de niveaux libres450
Figure 45 – Détermination de l'énergie massique nette à l'aspiration <i>NPSE</i> et de la hauteur de charge nette absolue à l'aspiration <i>NPSH</i> 451
Figure 46 – Montage en balance454
Figure 47 – Montage en balance avec renvoi d'angle455
Figure 48 – Montage en balance avec deux châssis séparés455
Figure 49 – Montage avec les paliers de la machine et les joints non en balance455
Figure 50 – Montage avec palier inférieur et joint non en balance
Figure 51 – Montage avec palier intermédiaire et joint non en balance
Figure 52 – Montage utilisant un couplemètre456
Figure 53 – Montage utilisant un couplemètre avec les paliers de la machine et les joints en balance
Figure 54 – Montage utilisant un couplemètre avec les paliers de la machine et les joints non en balance
Figure 55 – Choix de la méthode de transposition appropriée461
Figure 56 – Modèle de turbine à simple réglage (Francis): diagramme en colline (facteur de débit en fonction du facteur de vitesse)463
Figure 57 – Modèle de turbine à simple réglage (Francis): diagramme en colline (coefficient d'énergie en fonction du coefficient de débit)463
Figure 58 – Modèle de turbine à double réglage (Kaplan): diagramme en colline464
Figure 59 – Modèle de pompe à simple réglage (radiale): diagramme de performances464
Figure 60 – Modèle de pompe à double réglage: diagramme de performances465
Figure 61 – Modèle de turbine Pelton: diagramme en colline (exemple d'une machine à six injecteurs)
Figure 62 – Modèle de pompe-turbine radiale: diagramme général des quatre quadrants
Figure 63 – Machine à réaction: procédure pour calculer les résultats d'essai en vue de les comparer aux performances garanties467
Figure 64 – Turbine à simple réglage: surface tridimensionnelle du rendement hydraulique et courbes caractéristiques à <i>E_{nD}</i> constant469
Figure 65 – Pompe à simple réglage: courbes caractéristiques
Figure 66 – Turbine à double réglage: courbes caractéristiques à <i>E_{nD}</i> constant471
Figure 67 – Pompe à double réglage: courbes caractéristiques à <i>E</i> nD constant
Figure 68 – Turbine non réglable: courbes caractéristiques

- 320 -

Figure 69 – Pompe non réglable: courbes caractéristiques	474
Figure 70 – Correction de la courbe de rendement pour prendre en compte l'influence de la cavitation (par exemple machines tubulaires en surcharge)	475
Figure 71 – Modèle de turbine Francis: courbes de cavitation	475
Figure 72 – Modèle de pompe: courbes de cavitation	475
Figure 73 – Courbes de cavitation d'une modèle de turbine Francis: exemples de limites d'application de la formule de transposition	477
Figure 74 – Courbes d'emballement d'une turbine à simple réglage (Francis)	480
Figure 75 – Courbes d'emballement d'une turbine à simple réglage (Pelton à six jets)	480
Figure 76 – Détermination de la vitesse d'emballement par extrapolation: exemple d'une turbine à simple réglage (Francis)	480
Figure 77 – Influence du nombre de Thoma sur la vitesse et le débit d'emballement d'une turbine à simple réglage (Francis)	481
Figure 78 – Influence du nombre de Thoma sur la vitesse et le débit d'emballement d'une turbine à double réglage (Kaplan)	482
Figure 79 – Influence du nombre de Thoma sur les courbes d'emballement hors conjugaison d'une turbine à double réglage (Kaplan)	482
Figure 80 – Exemple de courbe d'étalonnage	486
Figure 81 – Machine à simple réglage	492
Figure 82 – Machine à double réglage	492
Figure 83 – Turbine à simple réglage: comparaison entre garanties et résultats de mesure	493
Figure 84 – Turbine non réglable: comparaison entre garanties et résultats de mesure	494
Figure 85 – Pompe non réglable: comparaison entre garanties et résultats de mesure	495
Figure 86 – Courbes de vitesse et de débit d'emballement d'une turbine Francis: comparaison entre garanties et résultats de mesure	497
Figure 87 – Turbine modèle: courbe de cavitation et comparaison avec la garantie portant sur l'influence de la cavitation sur le rendement	498
Figure 88 – Système typique d'acquisition de données	502
Figure 89 – Réponse en fréquence d'un filtre analogique anti-repliement	503
Figure 90 – Emplacements suggérés pour les transducteurs	508
Figure 91 – Zones d'exploration dans un diagramme de pompe	510
Figure 92 – Zones d'exploration dans une colline de turbine	511
Figure 93 – Fonctionnement normal en mode pompe d'un modèle de pompe-turbine de $n_{QE} = 0,102$	513
Figure 94 – Fonctionnement à débit nul (10 % d'ouverture des aubes directrices) d'un modèle de pompe-turbine de $n_{QE} = 0,102$	513
Figure 95 – Fonctionnement à charge partielle d'un modèle de turbine Francis de n_{QE} = 0,321: Q_{nD}/Q_{nDopt} = 0,719	514
Figure 96 – Fonctionnement à charge partielle élevée d'un modèle de turbine Francis de $n_{QE} = 0,226$: $Q_{nD}/Q_{nDopt} = 0,764$	514
Figure 97 – Fonctionnement à pleine charge d'un modèle de turbine Francis de n_{QE} = 0,173: Q_{nD}/Q_{nDopt} = 1,218	515
Figure 98 – Exemple d'un diagramme en cascade des fluctuations de pression dans le diffuseur d'une turbine Francis, transducteur p ₁	516

- 3	321	_
-----	-----	---

Figure 99 – Exemple de diagramme résumé des fluctuations de pression dans le diffuseur d'une turbine Francis, transducteur p ₂	517
Figure 100 – Interaction du système extérieur avec les sources de fluctuations de pression de la machine hydraulique	518
Figure 101 – Définition du système de coordonnées	521
Figure 102 – Les diverses composantes de la force axiale pour une machine radiale	523
Figure 103 – Dispositif d'essai typique pour le mesurage de la poussée axiale	525
Figure 104 – Dispositif d'étalonnage typique pour le mesurage de la poussée axiale	526
Figure 105 – Facteur de force axiale en fonction du facteur de débit pour différentes énergies hydrauliques spécifiques constantes en mode pompe	528
Figure 106 – Facteur de force axiale en fonction du facteur de vitesse mesuré pour différentes ouvertures du distributeur dans les quatre quadrants pour une pompe- turbine	528
Figure 107 – Dispositifs typiques pour le mesurage de la poussée axiale (arbre horizontal ou vertical)	531
Figure 108 – Exemples de conception de directrices instrumentées pour la mesure du couple	535
Figure 109 – Facteur de couple sur les directrices en fonction de l'angle du distributeur, mesuré en mode turbine à différentes énergies hydrauliques massiques	537
Figure 110 – Facteur de couple sur les directrices en fonction de l'angle du distributeur, mesuré en mode pompe à différentes énergies hydrauliques massiques	538
Figure 111 – Facteur de couple sur les directrices en fonction du facteur de vitesse mesuré pour différents angles du distributeur dans les quatre quadrants d'une pompe- turbine	538
Figure 112 – Exemple d'un dispositif de mesure du couple sur les pales avec transmission télémétrique	541
Figure 113 – Caractéristiques de fonctionnement et de couple hydraulique sur les pales d'une turbine axiale, mesurées à angle de pales β constant et pour différents angles α des directrices	543
Figure 114 – Facteur de force sur le pointeau d'une turbine Pelton en fonction de la course relative du pointeau	547
Figure 115 – Exemple de diagramme des quatre quadrants pour une pompe-turbine radiale	549
Figure 116 – Diagramme des différents modes de fonctionnement	551
Figure 117 – Caractéristique en S dans le mode turbine-frein	554
Figure 118 – Caractéristique en pompe avec un domaine de pente positive dans une plage limitée de débit	554
Figure 119 – Exemple de représentation graphique des résultats d'essai indiciel	557
Figure D.1 – Variation de rendement dans des conditions de fonctionnement hydrauliquement semblables avec des valeurs de <i>Re</i> différentes pour A et B	574
Figure D.2 – Variation des pertes relatives transposables	575
Figure D.3 – Courbe de transposition au point de meilleur rendement	577
Figure D.4 – Majoration du rendement de Re_{M^*} constant à Re_P constant	578
Figure D.5 – Majoration du rendement de Re _M variable à Rep constant	579
Figure F.1 – Turbine à simple réglage: détermination de la vitesse maximale d'emballement compte tenu des pertes par frottement et par ventilation du groupe	583
Figure G.1 – Principe de la méthode de segments séparés	585
Figure G.2 – Exemple de détermination des intervalles	585

- 322 -

Figure I.1 – Influence du nombre de Froude	596
Figure I.2 – Influence du nombre de Weber	596
Figure I.3 – Influence du nombre de Reynolds	597
Figure K.1 – Définitions pour la détermination de l'énergie hydraulique massique nette à l'aspiration, <i>NPSE</i> , et de la hauteur de charge nette absolue à l'aspiration, <i>NPSH</i> d'une machine prototype ($E_{LS} \neq 0$)	602
Figure L.1 – Turbine	605
Figure L.2 – Pompe	606
Figure M.1 – a) Représentation de la pulsation de pression asynchrone et position des transducteurs de pression, et composantes synchrones b) et asynchrone c) du signal de pression	609
Figure O.1 – Exemple de labyrinthe de roue au plafond	613
Figure O.2 – Diamètres au plafond de roue	614
Figure O.3 – Tuyauterie d'équilibrage	615
Figure O.4 – Exemple de labyrinthe de roue en ceinture	616
Tableau 1 – Écarts maximaux admissibles	376
Tableau 2 – Rugosité de surface <i>Ra</i> maximale recommandée pour le prototype	381
Tableau 3 – Paramètres de similitude	382
Tableau 4 – Similitude requise pour les différents types d'essai sur modèle	384
Tableau 5 – Valeurs minimales de la taille des modèles et des paramètres d'essai	390
Tableau 6 – Coefficients de la formule de Herbst et Roegener	408
Tableau 7 – Énergie hydraulique massique minimale	410
Tableau 8 – Nomenclature pour les Figure 46 à Figure 54	454
Tableau 9 – Variables définissant le point de fonctionnement d'une machine	462
Tableau 10 – Récapitulation des erreurs qui déterminent l'incertitude totale de mesure	487
Tableau 11 – Définitions des forces élémentaires individuelles de la poussée axiale	524
Tableau 12 – Forces non hydrauliques affectant la mesure de poussée radiale	532
Tableau 13 – Définition des quadrants et des modes de fonctionnement	549
Tableau B.1 – Accélération due à la pesanteur g (m·s ⁻²)	560
Tableau B.2 – Masse volumique de l'eau distillée $ ho_{ m Wd}$ (kg·m $^{-3}$) (1 de 2)	561
Tableau B.3 – Viscosité cinématique de l'eau distillée ν (m ² ·s ⁻¹)	563
Tableau B.4 – Pression de vapeur de l'eau distillée p _{va} (Pa)	564
Tableau B.5 – Masse volumique de l'air sec $ ho_{a}$ (kg·m $^{-3}$)	565
Tableau B.6 – Pression ambiante p _{amb} (Pa)	566
Tableau B.7 – Masse volumique du mercure $ ho_{ m Hg}$ (kg·m $^{-3}$)	567
Tableau D.1 – Valeurs de V _{ref}	576
Tableau I.1 – Valeurs numériques de la tension superficielle σ^*	595
Tableau J.1 – Niveaux de confiance	599
Tableau J.2 – Valeurs de <i>t</i> de Student	600
Tableau J.3 – Calcul de l'écart-type estimé et de l'incertitude pour huit observations	601
Tableau K.1 – Présentation des valeurs de $\sigma_{\sf plc}$ calculées et autres données	604

- 323 -

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

TURBINES HYDRAULIQUES, POMPES D'ACCUMULATION ET POMPES-TURBINES – ESSAIS DE RÉCEPTION SUR MODÈLE

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC "). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 60193 a été établie par le comité d'études 4 de l'IEC comité technique 4: Turbines hydrauliques.

Cette troisième édition annule et remplace la seconde édition publiée en 1999. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) mise à jour des méthodes/appareils de mesures utilisés actuellement pour les contrôles dimensionnels sur modèle et sur prototype;
- b) mise à jour des exigences de précision pour les procédures de contrôle dimensionnels tenant compte des nouvelles technologies;

- 324 -

IEC 60193:2019 © IEC 2019

- c) fusion des tableaux/sections présentant des informations redondantes dans la section contrôles dimensionnels;
- d) mise à jour des méthodes de mesurage du débit;
- e) mise à jour des méthodes et de la terminologie relatives aux fluctuations de pression;
- f) définition des temps de mesurages pour des analyses précises des fluctuations de pression sur modèle;
- g) nouvelle définition de la transposition des fluctuations de pression au prototype;
- h) mise à jour des exigences d'ondulations de surface sur prototype;
- i) nouvelle définition des méthodes/références dans la section sur la teneur en germes de cavitation (5.7.3.2.2);
- j) mise à jour du 7.3 et révision des méthodes de mesurage de poussée radiale;
- k) mise à jour du 7.4 (Efforts hydrauliques sur les organes de réglage);
- I) mise à jour et développement de méthodologie des essais dans le domaine de fonctionnement élargi, Paragraphe 7.5;
- m) mise à jour du 7.6 concernant les essais indiciels;
- n) mise à jour des mesurages de rugosité;
- o) mise à jour des références;
- p) mise à jour des figures;
- q) révision de la définition de sigma;
- r) reference à la nouvelle méthode de transposition conformément à l'IEC 62097.

Le texte de cette Norme internationale est issu des documents suivants:

FDIS	Rapport de vote
4/371/FDIS	4/373/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. A cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

- 325 -

TURBINES HYDRAULIQUES, POMPES D'ACCUMULATION ET POMPES-TURBINES – ESSAIS DE RÉCEPTION SUR MODÈLE

1 Domaine d'application

Le présent document est applicable aux modèles de laboratoire de tout type de turbine hydraulique à action ou à réaction, de pompe d'accumulation ou de pompe-turbine.

Il s'applique aux modèles de machines prototypes ayant une puissance unitaire supérieure à 5 MW ou un diamètre de référence supérieur à 3 m. Bien que l'application intégrale des procédures prescrites ne soit généralement pas justifiée pour des machines de puissance et de dimension inférieures, le présent document peut néanmoins être utilisé pour de telles machines après accord entre l'acheteur et le fournisseur.

Dans ce document, le terme "turbine" inclut une pompe-turbine fonctionnant en turbine et le terme "pompe" inclut une pompe-turbine fonctionnant en pompe.

Ce document exclut tous les sujets à caractère purement commercial, excepté ceux intimement liés à la bonne conduite des essais.

Ce document ne concerne ni les détails de construction des machines, ni les propriétés mécaniques de leurs différentes parties pour autant que ces éléments n'affectent pas le fonctionnement du modèle ni la relation entre les performances du modèle et celles du prototype.

Le présent document régit les modalités des essais de réception sur modèle des turbines hydrauliques, pompes d'accumulation et pompes-turbines en vue de déterminer si les garanties contractuelles de performances hydrauliques principales (voir 4.2) sont respectées.

Il fixe les règles qui gouvernent la conduite de ces essais et prescrit les mesures à prendre en cas de contestation d'une phase quelconque des essais.

Les objectifs principaux du présent document sont:

- de définir les termes et les grandeurs utilisés;
- de prescrire les méthodes d'essai et les façons de mesurer les grandeurs permettant d'évaluer les performances hydrauliques du modèle;
- de prescrire les méthodes de calcul des résultats et de comparaison aux garanties;
- de déterminer si les garanties contractuelles qui sont du domaine de ce document sont respectées;
- de définir l'étendue, le contenu et la présentation du rapport final.

Les garanties peuvent être données de l'une des façons suivantes:

- garanties reposant sur les performances hydrauliques du prototype, calculées à partir des résultats d'essai du modèle en tenant compte des effets d'échelle;
- garanties reposant sur les performances hydrauliques du modèle.

- 326 -

IEC 60193:2019 © IEC 2019

Par ailleurs des données complémentaires de fonctionnement (voir 4.4) peuvent être nécessaires pour la conception ou l'exploitation de la machine hydraulique prototype. Contrairement aux exigences indiquées aux Articles 4 à 6 relatives aux performances hydrauliques principales, les informations sur ces données complémentaires décrites à l'Article 7 ne sont considérées que comme des recommandations ou des conseils à l'utilisateur (voir 7.1).

Il est particulièrement recommandé d'effectuer les essais de réception sur modèle lorsque les conditions pratiques dans lesquelles seraient faits des essais de réception sur le site (voir l'IEC 60041) ne permettraient pas de prouver le respect des garanties données pour le prototype.

Une méthode de transposition tenant compte de la rugosité des surfaces entre le modèle et le prototype pour les pompes-turbines, les turbines Francis et les turbines axiales est décrite dans l'IEC 62097. Cette méthode requiert les valeurs de rugosité des surfaces modèle et prototype, respectivement et tient compte du décalage en $n_{\rm ED}$, $Q_{\rm ED}$ et $P_{\rm ED}$ afin de calculer la transposition entre le modèle et le prototype. Par contre, cette nouvelle méthode de calcul de transposition n'a pas été complètement validée en raison d'un manque de données pour les turbines Francis avec bâche fronto-spirale et les turbines axiales. De plus, l'IEC 62097 ne s'applique pas aux pompes d'accumulation, aux turbines Pelton et Dériaz. Les procédures de transposition de rendement décrites à l'Annexe D et l'Annexe I peuvent être donc appliquées, pour ces types de machines et dans le cas où, d'un commun accord, des conditions d'écoulement hydrauliquement lisse sont admises sur modèle et prototype, respectivement. Les limites d'application de chacune des méthodes de transposition décrites dans le présent document et l'IEC 62097 sont définies dans l'Annexe E.

La méthode de transposition des performances entre le modèle et le prototype doit être clairement définie dans les documents contractuels.

Le présent document peut aussi s'appliquer aux essais sur modèle effectués à d'autres fins, par exemple des essais comparatifs ou des travaux de recherche et développement.

Lorsque des essais de réception sur modèle ont été réalisés, les essais sur place peuvent se réduire à des essais indiciels (voir l'IEC 60041:1991).

S'il apparaît une contradiction entre ce document et d'autres documents, les dispositions du présent document prévalent.

2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 62097:2009, Machines hydrauliques, radiales et axiales – Méthode de conversion des performances du modèle au prototype

ISO 2186:2007, Débit des fluides dans les conduites fermées – Liaisons pour la transmission du signal de pression entre les éléments primaires et secondaires

ISO 2533:1975, Atmosphère-type

ISO 4185:1980, Mesure de débit des liquides dans les conduites fermées – Méthode par pesée

ISO 4287:1997, Spécification géométrique des produits (GPS) – État de surface: Méthode du profil – Termes, définitions et paramètres d'état de surface

- 327 -

ISO 8316:1987, Mesure de débit des liquides dans les conduites fermées – Méthode par jaugeage d'un réservoir volumétrique