Warning! Make sure that you obtained this publication from an authorized distributor.
Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.
CONTENTS

FOREWORD...10
INTRODUCTION...13
1 Scope..15
2 Normative references...16
3 Terms, definitions and abbreviated terms ...17
 3.1 Terms and definitions ...17
 3.2 Abbreviated terms ...26
4 General requirements ..26
 4.1 General ...26
 4.2 Selection of equipment ...27
 4.2.1 General ..27
 4.2.2 Switchgear ..27
 4.3 Electrical supply ..28
 4.3.1 General ..28
 4.3.2 AC supplies ..28
 4.3.3 DC supplies ..28
 4.3.4 Special supply systems ..28
 4.4 Physical environment and operating conditions ..28
 4.4.1 General ..28
 4.4.2 Electromagnetic compatibility (EMC) ..29
 4.4.3 Ambient air temperature ..29
 4.4.4 Humidity ...29
 4.4.5 Altitude ..29
 4.4.6 Contaminants ...29
 4.4.7 Ionizing and non-ionizing radiation ..30
 4.4.8 Vibration, shock, and bump ...30
 4.5 Transportation and storage ..30
 4.6 Provisions for handling ..30
5 Incoming supply conductor terminations and devices for disconnecting and
 switching off ..30
 5.1 Incoming supply conductor terminations ..30
 5.2 Terminal for connection of the external protective conductor31
 5.3 Supply disconnecting (isolating) device ...31
 5.3.1 General ..31
 5.3.2 Type ...31
 5.3.3 Requirements ...32
 5.3.4 Operating means of the supply disconnecting device32
 5.3.5 Excepted circuits ...33
 5.4 Devices for removal of power for prevention of unexpected start-up34
 5.5 Devices for isolating electrical equipment ..34
 5.6 Protection against unauthorized, inadvertent and/or mistaken connection35
6 Protection against electric shock ..35
 6.1 General ...35
 6.2 Basic protection ..35
 6.2.1 General ..35
 6.2.2 Protection by enclosures ..36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3</td>
<td>Protection by insulation of live parts</td>
<td>37</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Protection against residual voltages</td>
<td>37</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Protection by barriers</td>
<td>37</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Protection by placing out of reach or protection by obstacles</td>
<td>37</td>
</tr>
<tr>
<td>6.3</td>
<td>Fault protection</td>
<td>37</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General</td>
<td>37</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Prevention of the occurrence of a touch voltage</td>
<td>38</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Protection by automatic disconnection of supply</td>
<td>38</td>
</tr>
<tr>
<td>6.4</td>
<td>Protection by the use of PELV</td>
<td>39</td>
</tr>
<tr>
<td>6.4.1</td>
<td>General requirements</td>
<td>39</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Sources for PELV</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Protection of equipment</td>
<td>40</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>40</td>
</tr>
<tr>
<td>7.2</td>
<td>Overcurrent protection</td>
<td>40</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General</td>
<td>40</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Supply conductors</td>
<td>40</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Power circuits</td>
<td>41</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Control circuits</td>
<td>41</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Socket outlets and their associated conductors</td>
<td>41</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Lighting circuits</td>
<td>41</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Transformers</td>
<td>42</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Location of overcurrent protective devices</td>
<td>42</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Overcurrent protective devices</td>
<td>42</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Rating and setting of overcurrent protective devices</td>
<td>42</td>
</tr>
<tr>
<td>7.3</td>
<td>Protection of motors against overheating</td>
<td>42</td>
</tr>
<tr>
<td>7.3.1</td>
<td>General</td>
<td>42</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Overload protection</td>
<td>43</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Over-temperature protection</td>
<td>43</td>
</tr>
<tr>
<td>7.4</td>
<td>Protection against abnormal temperature</td>
<td>43</td>
</tr>
<tr>
<td>7.5</td>
<td>Protection against the effects of supply interruption or voltage reduction and subsequent restoration</td>
<td>44</td>
</tr>
<tr>
<td>7.6</td>
<td>Motor overspeed protection</td>
<td>44</td>
</tr>
<tr>
<td>7.7</td>
<td>Additional earth fault/residual current protection</td>
<td>44</td>
</tr>
<tr>
<td>7.8</td>
<td>Phase sequence protection</td>
<td>44</td>
</tr>
<tr>
<td>7.9</td>
<td>Protection against overvoltages due to lightning and to switching surges</td>
<td>44</td>
</tr>
<tr>
<td>7.10</td>
<td>Short-circuit current rating</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Equipotential bonding</td>
<td>45</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>45</td>
</tr>
<tr>
<td>8.2</td>
<td>Protective bonding circuit</td>
<td>47</td>
</tr>
<tr>
<td>8.2.1</td>
<td>General</td>
<td>47</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Protective conductors</td>
<td>47</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Continuity of the protective bonding circuit</td>
<td>48</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Protective conductor connecting points</td>
<td>49</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Mobile machines</td>
<td>49</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Additional requirements for electrical equipment having earth leakage currents higher than 10 mA</td>
<td>49</td>
</tr>
<tr>
<td>8.3</td>
<td>Measures to restrict the effects of high leakage current</td>
<td>50</td>
</tr>
<tr>
<td>8.4</td>
<td>Functional bonding</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Control circuits and control functions</td>
<td>50</td>
</tr>
</tbody>
</table>
11.2 Location and mounting ... 71
11.2.1 Accessibility and maintenance .. 71
11.2.2 Physical separation or grouping ... 72
11.2.3 Heating effects .. 72
11.3 Degrees of protection ... 73
11.4 Enclosures, doors and openings .. 73
11.5 Access to electrical equipment .. 74
12 Conductors and cables ... 74
12.1 General requirements ... 74
12.2 Conductors .. 74
12.3 Insulation ... 75
12.4 Current-carrying capacity in normal service 75
12.5 Conductor and cable voltage drop ... 76
12.6 Flexible cables .. 77
12.6.1 General ... 77
12.6.2 Mechanical rating ... 77
12.6.3 Current-carrying capacity of cables wound on drums 77
12.7 Conductor wires, conductor bars and slip-ring assemblies 78
12.7.1 Basic protection ... 78
12.7.2 Protective conductors ... 78
12.7.3 Protective conductor current collectors 78
12.7.4 Removable current collectors with a disconnector function 79
12.7.5 Clearances in air ... 79
12.7.6 Creepage distances .. 79
12.7.7 Conductor system sectioning .. 79
12.7.8 Construction and installation of conductor wire, conductor bar systems and slip-ring assemblies ... 79
13 Wiring practices .. 80
13.1 Connections and routing ... 80
13.1.1 General requirements ... 80
13.1.2 Conductor and cable runs .. 80
13.1.3 Conductors of different circuits ... 81
13.1.4 AC circuits – Electromagnetic effects (prevention of eddy currents) .. 81
13.1.5 Connection between pick-up and pick-up converter of an inductive power supply system 81
13.2 Identification of conductors ... 81
13.2.1 General requirements ... 81
13.2.2 Identification of the protective conductor / protective bonding conductor ... 82
13.2.3 Identification of the neutral conductor 82
13.2.4 Identification by colour .. 83
13.3 Wiring inside enclosures ... 83
13.4 Wiring outside enclosures .. 84
13.4.1 General requirements ... 84
13.4.2 External ducts ... 84
13.4.3 Connection to moving elements of the machine 84
13.4.4 Interconnection of devices on the machine 85
13.4.5 Plug/socket combinations ... 85
13.4.6 Dismantling for shipment ... 86
13.4.7 Additional conductors ... 86
13.5 Ducts, connection boxes and other boxes .. 86
13.5.1 General requirements .. 86
13.5.2 Rigid metal conduit and fittings ... 87
13.5.3 Flexible metal conduit and fittings .. 87
13.5.4 Flexible non-metallic conduit and fittings .. 87
13.5.5 Cable trunking systems ... 87
13.5.6 Machine compartments and cable trunking systems ... 88
13.5.7 Connection boxes and other boxes ... 88
13.5.8 Motor connection boxes ... 88
14 Electric motors and associated equipment ... 88
14.1 General requirements .. 88
14.2 Motor enclosures .. 88
14.3 Motor dimensions ... 89
14.4 Motor mounting and compartments ... 89
14.5 Criteria for motor selection .. 89
14.6 Protective devices for mechanical brakes .. 89
15 Socket-outlets and lighting ... 90
15.1 Socket-outlets for accessories .. 90
15.2 Local lighting of the machine and of the equipment ... 90
15.2.1 General .. 90
15.2.2 Supply .. 90
15.2.3 Protection ... 91
15.2.4 Fittings ... 91
16 Marking, warning signs and reference designations ... 91
16.1 General ... 91
16.2 Warning signs .. 91
16.2.1 Electric shock hazard ... 91
16.2.2 Hot surfaces hazard ... 92
16.3 Functional identification .. 92
16.4 Marking of enclosures of electrical equipment ... 92
16.5 Reference designations ... 92
17 Technical documentation ... 92
17.1 General ... 92
17.2 Information related to the electrical equipment .. 93
18 Verification .. 94
18.1 General ... 94
18.2 Verification of conditions for protection by automatic disconnection of supply 94
18.2.1 General .. 94
18.2.2 Test 1 – Verification of the continuity of the protective bonding circuit 95
18.2.3 Test 2 – Fault loop impedance verification and suitability of the associated overcurrent protective device .. 95
18.2.4 Application of the test methods for TN-systems .. 95
18.3 Insulation resistance tests ... 97
18.4 Voltage tests ... 98
18.5 Protection against residual voltages .. 98
18.6 Functional tests .. 98
18.7 Retesting ... 98
Annex A (normative) Fault protection by automatic disconnection of supply 99
INTERNATIONAL ELECTROTECHNICAL COMMISSION

SAFETY OF MACHINERY –
ELECTRICAL EQUIPMENT OF MACHINES –

Part 1: General requirements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60204-1 has been prepared by IEC technical committee 44: Safety of machinery – Electrotechnical aspects.

This sixth edition cancels and replaces the fifth edition published in 2005. It constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) added requirements to address applications involving power drive systems (PDS);

b) revised electromagnetic compatibility (EMC) requirements;

c) clarified overcurrent protection requirements;

d) requirements for determination of the short circuit current rating of the electrical equipment;
e) revised protective bonding requirements and terminology;
f) reorganization and revision to Clause 9, including requirements pertaining to safe torque off of PDS, emergency stop, and control circuit protection;
g) revised symbols for actuators of control devices;
h) revised technical documentation requirements;
i) general updating to current special national conditions, normative standards, and bibliographical references.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>44/765/FDIS</td>
<td>44/771/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60204 series, published under the general title Safety of machinery – Electrical equipment of machines, can be found on the IEC website.

The following differing practices of a less permanent nature exist in the countries indicated below.

4.3.1: The voltage characteristics of electricity supplied by public distribution systems in Europe are given in EN 50160:2010.

5.1: Exception is not allowed (USA).

5.1: TN-C systems are not permitted in low-voltage installations in buildings (Norway).

5.2: Terminals for the connection of the protective earthing conductors may be identified by the colour green, the letters “G” or “GR” or “GRD” or “GND”, or the word “ground” or “grounding”, or with the graphical symbol IEC 60417-50 19:2006-08 or any combination (USA).

6.3.3 b), 13.4.5 b), 18.2.1: TT power systems are not allowed (USA).

6.3.3, 18.2, Annex A: TN systems are not used. TT systems are the national standard (Japan).

6.3.3 b): The use of residual current protective devices with a rated residual operating current not exceeding 1 A is mandatory in TT systems as a means for fault protection by automatic disconnection of supply (Italy).

7.2.3: Disconnection of the neutral conductor is mandatory in a TN-S system (France and Norway).

7.2.3: Third paragraph: distribution of a neutral conductor with an IT system is not allowed (USA and Norway).

7.10: For evaluation of short circuit ratings the requirements of UL 508A Supplement SB, may be used (USA).

9.1.2: Maximum nominal AC control circuit voltage is 120 V (USA).

12.2: Only stranded conductors are allowed on machines, except for 0,2 mm² solid conductors within enclosures (USA).

12.2: The smallest power circuit conductor allowed on machines is 0,82 mm² (AWG 18) in multiconductor cables or in enclosures (USA).

Table 5: Cross-sectional area is specified in NFPA 79 using American Wire Gauge (AWG) (USA). See Annex G.
13.2.2: For the protective conductor, the colour identification GREEN (with or without YELLOW stripes) is used as equivalent to the bicolour combination GREEN-AND-YELLOW (USA and Canada).

13.2.3: The colour identification WHITE or GREY is used for earthed neutral conductors instead of the colour identification BLUE (USA and Canada).

15.2.2: First paragraph: Maximum value between conductors 150 V (USA).

15.2.2: Second paragraph, 5th bullet: The full load current rating of lighting circuits does not exceed 15 A (USA).

16.4: Nameplate marking requirements (USA).

A.2.2.2: The permissible maximum value of R_A is regulated (e.g. when $U_o \geq 300\,V$, R_A shall be less than 10 Ω, when $U_o < 300\,V$, R_A shall be less than 100 Ω, U_o is the nominal AC line to earth voltage in volts (V) (Japan).

A.2.2.2: The maximum permissible value of R_A is 83 Ω (Netherlands).

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This part of IEC 60204 provides requirements and recommendations relating to the electrical equipment of machines so as to promote:

– safety of persons and property;
– consistency of control response;
– ease of operation and maintenance.

More guidance on the use of this part of IEC 60204 is given in Annex F.

Figure 1 has been provided as an aid to the understanding of the inter-relationship of the various elements of a machine and its associated equipment. Figure 1 is a block diagram of a typical machine and associated equipment showing the various elements of the electrical equipment addressed in this part of IEC 60204. Numbers in parentheses () refer to Clauses and Subclauses in this part of IEC 60204. It is understood in Figure 1 that all of the elements taken together including the safeguards, tooling/fxturing, software, and the documentation, constitute the machine, and that one or more machines working together with usually at least one level of supervisory control constitute a manufacturing cell or system.
Figure 1 – Block diagram of a typical machine
SAFETY OF MACHINERY –
ELECTRICAL EQUIPMENT OF MACHINES –

Part 1: General requirements

1 Scope

This part of IEC 60204 applies to electrical, electronic and programmable electronic equipment and systems to machines not portable by hand while working, including a group of machines working together in a co-ordinated manner.

NOTE 1 This part of IEC 60204 is an application standard and is not intended to limit or inhibit technological advancement.

NOTE 2 In this part of IEC 60204, the term “electrical” includes electrical, electronic and programmable electronic matters (i.e. “electrical equipment” means electrical, electronic and programmable electronic equipment).

NOTE 3 In the context of this part of IEC 60204, the term “person” refers to any individual and includes those persons who are assigned and instructed by the user or his agent(s) in the use and care of the machine in question.

The equipment covered by this part of IEC 60204 commences at the point of connection of the supply to the electrical equipment of the machine (see 5.1).

NOTE 4 The requirements for the electrical supply installation are given in the IEC 60364 series.

This part of IEC 60204 is applicable to the electrical equipment or parts of the electrical equipment that operate with nominal supply voltages not exceeding 1 000 V for alternating current (AC) and not exceeding 1 500 V for direct current (DC), and with nominal supply frequencies not exceeding 200 Hz.

NOTE 5 Information on electrical equipment or parts of the electrical equipment that operate with higher nominal supply voltages can be found in IEC 60204-11.

This part of IEC 60204 does not cover all the requirements (for example guarding, interlocking, or control) that are needed or required by other standards or regulations in order to protect persons from hazards other than electrical hazards. Each type of machine has unique requirements to be accommodated to provide adequate safety.

This part of IEC 60204 specifically includes, but is not limited to, the electrical equipment of machines as defined in 3.1.40.

NOTE 6 Annex C lists examples of machines whose electrical equipment can be covered by this part of IEC 60204.

This part of IEC 60204 does not specify additional and special requirements that can apply to the electrical equipment of machines that, for example:

- are intended for use in open air (i.e. outside buildings or other protective structures);
- use, process, or produce potentially explosive material (for example paint or sawdust);
- are intended for use in potentially explosive and/or flammable atmospheres;
- have special risks when producing or using certain materials;
- are intended for use in mines;
- are sewing machines, units, and systems (which are covered by IEC 60204-31);
- are hoisting machines (which are covered by IEC 60204-32);
- are semiconductor fabrication equipment (which are covered by IEC 60204-33).
Power circuits where electrical energy is directly used as a working tool are excluded from this part of IEC 60204.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60034-1, Rotating electrical machines – Part 1: Rating and performance

IEC 60072 (all parts), Dimensions and output series for rotating electrical machines

IEC 60309-1, Plugs, socket-outlets, and couplers for industrial purposes – Part 1: General requirements

IEC 60364-1, Low-voltage electrical installations – Part 1: Fundamental principles, assessment of general characteristics, definitions

IEC 60364-4-41:2005, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60364-4-43:2008, Low-voltage electrical installations – Part 4-43: Protection for safety – Protection against overcurrent

IEC 60364-5-54:2011, Low-voltage electrical installations – Part 5-54: Selection and erection of electrical equipment – Earthing arrangements and protective conductors

IEC 60417, Graphical symbols for use on equipment. Available from: http://www.graphical-symbols.info/equipment

IEC 60445:2010, Basic and safety principles for man-machine interface, marking and identification – Identification of equipment terminals, conductor terminations and conductors

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60664-1, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60947-2, Low-voltage switchgear and controlgear – Part 2: Circuit-breakers

IEC 60947-3, Low-voltage switchgear and controlgear – Part 3: Switches, disconnectors, switch-disconnectors, and fuse-combination units

IEC 60947-5-1:2003, Low-voltage switchgear and controlgear – Part 5-1: Control circuit devices and switching elements – Electromechanical control circuit devices

IEC 60947-5-1:2003/AMD1:2009
3 Terms, definitions and abbreviated terms

3.1

For the purposes of this document, the following terms and definitions apply.

3.1.1

actuator

part of a device to which an external action is to be applied

Note 1 to entry: The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.

Note 2 to entry: There are some actuating means that do not require an external actuating force, but only an action, e.g. touchscreens.

Note 3 to entry: See also 3.1.39.
SOMMAIRE

AVANT-PROPOS .. 144
INTRODUCTION .. 147
1 Domaine d’application .. 149
2 Références normatives ... 150
3 Termes, définitions et abréviations 152
 3.1 Termes et définitions 152
 3.2 Abréviations ... 161
4 Exigences générales ... 161
 4.1 Généralités ... 161
 4.2 Choix des équipements 162
 4.2.1 Généralités .. 162
 4.2.2 Appareillage de connexion 162
 4.3 Alimentation électrique 162
 4.3.1 Généralités .. 162
 4.3.2 Alimentations en courant alternatif 163
 4.3.3 Alimentations en courant continu 163
 4.3.4 Systèmes d’alimentation spéciaux 163
 4.4 Environnement physique et conditions de fonctionnement ... 163
 4.4.1 Généralités .. 163
 4.4.2 Compatibilité électromagnétique (CEM) 163
 4.4.3 Température de l’air ambiant 164
 4.4.4 Humidité ... 164
 4.4.5 Altitude .. 164
 4.4.6 Polluants .. 164
 4.4.7 Rayonnements ionisants et non ionisants 165
 4.4.8 Vibrations, chocs et coups 165
 4.5 Transport et stockage 165
 4.6 Dispositions pour la manutention 165
5 Borne des conducteurs d’alimentation à l’arrivée et appareils de sectionnement et de coupure .. 165
 5.1 Borne des conducteurs d’alimentation à l’arrivée .. 165
 5.2 Borne pour le raccordement du conducteur de protection externe ... 166
 5.3 Appareil de sectionnement de l’alimentation .. 166
 5.3.1 Généralités .. 166
 5.3.2 Type ... 167
 5.3.3 Exigences .. 167
 5.3.4 Moyens de manœuvre de l’appareil de sectionnement de l’alimentation 168
 5.3.5 Circuits exclus 168
 5.4 Appareils de coupure de l’alimentation pour éviter un démarrage fortuit 169
 5.5 Appareils de sectionnement pour l’équipement électrique ... 170
 5.6 Protection contre une fermeture non autorisée, par inadvertance et/ou par erreur 170
6 Protection contre les chocs électriques 170
 6.1 Généralités ... 170
 6.2 Protection principale 171
 6.2.1 Généralités .. 171
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>Protection au moyen d’enveloppes</td>
<td>171</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Protection par isolant des parties actives</td>
<td>172</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Protection contre les tensions résiduelles</td>
<td>172</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Protection par barrières</td>
<td>173</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Protection par mise hors de portée ou protection par mise en place d’obstacles</td>
<td>173</td>
</tr>
<tr>
<td>6.3</td>
<td>Protection en cas de défaut</td>
<td>173</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Généralités</td>
<td>173</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Prévention contre l’apparition d’une tension de contact</td>
<td>173</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Protection par coupure automatique de l’alimentation</td>
<td>174</td>
</tr>
<tr>
<td>6.4</td>
<td>Protection par l’utilisation de la TBTP</td>
<td>175</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Exigences générales</td>
<td>175</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Sources pour la TBTP</td>
<td>176</td>
</tr>
<tr>
<td>7</td>
<td>Protection de l’équipement</td>
<td>176</td>
</tr>
<tr>
<td>7.1</td>
<td>Généralités</td>
<td>176</td>
</tr>
<tr>
<td>7.2</td>
<td>Protection contre les surintensités</td>
<td>176</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Généralités</td>
<td>176</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Conducteurs d’alimentation</td>
<td>176</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Circuits de puissance</td>
<td>176</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Circuits de commande</td>
<td>177</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Socles de prises de courant et conducteurs associés</td>
<td>177</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Circuits d’éclairage</td>
<td>177</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Transformateurs</td>
<td>178</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Emplacement des dispositifs de protection contre les surintensités</td>
<td>178</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Dispositifs de protection contre les surintensités</td>
<td>178</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Calibrage et réglage des dispositifs de protection contre les surintensités</td>
<td>178</td>
</tr>
<tr>
<td>7.3</td>
<td>Protection des moteurs contre la surchauffe</td>
<td>179</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Généralités</td>
<td>179</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Protection contre les surcharges</td>
<td>179</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Protection contre les températures excessives</td>
<td>179</td>
</tr>
<tr>
<td>7.4</td>
<td>Protection contre les températures anormales</td>
<td>180</td>
</tr>
<tr>
<td>7.5</td>
<td>Protection contre les effets de l’interruption de l’alimentation ou la réduction de la tension et leur rétablissement ultérieur</td>
<td>180</td>
</tr>
<tr>
<td>7.6</td>
<td>Protection contre la survitesse des moteurs</td>
<td>180</td>
</tr>
<tr>
<td>7.7</td>
<td>Protection supplémentaire contre les défauts à la terre/courants résiduels</td>
<td>180</td>
</tr>
<tr>
<td>7.8</td>
<td>Protection de l’ordre des phases</td>
<td>181</td>
</tr>
<tr>
<td>7.9</td>
<td>Protection contre les surtensions de foudre et de manœuvre</td>
<td>181</td>
</tr>
<tr>
<td>7.10</td>
<td>Courant assigné de court-circuit</td>
<td>181</td>
</tr>
<tr>
<td>8</td>
<td>Liaisons équipotentielles</td>
<td>181</td>
</tr>
<tr>
<td>8.1</td>
<td>Généralités</td>
<td>181</td>
</tr>
<tr>
<td>8.2</td>
<td>Circuit de protection</td>
<td>183</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Généralités</td>
<td>183</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Conducteurs de protection</td>
<td>183</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Continuité du circuit de protection</td>
<td>184</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Points de raccordement du conducteur de protection</td>
<td>185</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Machines mobiles</td>
<td>185</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Exigences supplémentaires pour un équipement électrique dont les courants de fuite à la terre sont supérieurs à 10 mA</td>
<td>186</td>
</tr>
<tr>
<td>8.3</td>
<td>Mesures pour limiter les effets d’un courant de fuite élevé</td>
<td>186</td>
</tr>
</tbody>
</table>
8.4 Liaisons fonctionnelles ... 186
9 Circuits de commande et fonctions de commande 187
9.1 Circuits de commande ... 187
 9.1.1 Alimentation des circuits de commande 187
 9.1.2 Tensions du circuit de commande .. 187
 9.1.3 Protection ... 188
9.2 Fonctions de commande .. 188
 9.2.1 Généralités ... 188
 9.2.2 Catégories de fonctions d'arrêt ... 188
 9.2.3 Fonctionnement ... 188
 9.2.4 Système de commande sans fil (CCS) 192
9.3 Verrouillages de protection .. 194
 9.3.1 Refermeture ou réarmement d'un moyen de protection avec dispositif de verrouillage ... 194
 9.3.2 Dépassement des limites de fonctionnement 194
 9.3.3 Mise en œuvre des fonctions auxiliaires 194
 9.3.4 Interverrouillages entre opérations différentes et pour des mouvements contraires ... 194
 9.3.5 Freinage par retour de courant .. 195
 9.3.6 Neutralisation provisoire des fonctions de sécurité et/ou des mesures de protection .. 195
9.4 Fonctions de commande en cas de défaillance 195
 9.4.1 Exigences générales ... 195
 9.4.2 Mesures de réduction des risques en cas de défaillance 196
 9.4.3 Protection contre les dysfonctionnements des circuits de commande ... 197
10 Interface opérateur et appareils de commande montés sur la machine 204
 10.1 Généralités .. 204
 10.1.1 Exigences générales ... 204
 10.1.2 Emplacement et montage .. 204
 10.1.3 Protection ... 204
 10.1.4 Capteurs de position .. 205
 10.1.5 Postes de commande portables et pendants 205
10.2 Organes de commande ... 205
 10.2.1 Couleurs .. 205
 10.2.2 Marquages .. 206
10.3 Voyants lumineux de signalisation et dispositifs d'affichage 206
 10.3.1 Généralités ... 206
 10.3.2 Couleurs .. 207
 10.3.3 Voyants lumineux et dispositifs d'affichage clignotants 207
10.4 Boutons-poussoirs lumineux .. 208
10.5 Appareils de commande rotatifs .. 208
10.6 Appareils de mise en marche ... 208
10.7 Appareils d'arrêt d'urgence .. 208
 10.7.1 Emplacement des appareils d'arrêt d'urgence 208
 10.7.2 Types d'appareils d'arrêt d'urgence 208
 10.7.3 Manœuvre de l'appareil de sectionnement de l'alimentation pour effectuer un arrêt d'urgence ... 208
10.8 Appareils de coupure d'urgence .. 209
 10.8.1 Emplacement des appareils de coupure d'urgence 209
 10.8.2 Types d'appareils de coupure d'urgence 209
10.8.3 Manœuvre locale de l’appareil de sectionnement de l’alimentation pour
effectuer une coupure d’urgence ... 209
10.9 Appareil de commande de validation ... 209
11 Appareillages de commande: emplacement, montage et enveloppes 210
11.1 Exigences générales .. 210
11.2 Emplacement et montage ... 210
11.2.1 Accessibilité et maintenance ... 210
11.2.2 Séparation physique ou groupage ... 210
11.2.3 Effets de la chaleur ... 211
11.3 Degrés de protection .. 211
11.4 Enveloppes, portes et ouvertures .. 212
11.5 Accès à l’équipement électrique ... 213
12 Conducteurs et câbles .. 213
12.1 Exigences générales .. 213
12.2 Conducteurs ... 213
12.3 Isolant ... 214
12.4 Courant maximal admissible en fonctionnement normal.............................. 214
12.5 Chute de tension dans les câbles et conducteurs .. 215
12.6 Câbles souples .. 216
12.6.1 Généralités .. 216
12.6.2 Dimensionnement mécanique .. 216
12.6.3 Courant maximal admissible des câbles enroulés sur des tambours 217
12.7 Câbles conducteurs, barres conductrices et ensembles de bagues collectrices .. 217
12.7.1 Protection principale .. 217
12.7.2 Conducteurs de protection .. 218
12.7.3 Collecteurs de courant du conducteur de protection 218
12.7.4 Collecteurs de courant démontables avec fonction de sectionnement 218
12.7.5 Distances d’isolement dans l’air ... 218
12.7.6 Lignes de fuite .. 218
12.7.7 Subdivision du système conducteur ... 219
12.7.8 Construction et installation des systèmes à câbles conducteurs, à
barres conductrices et des ensembles de bagues collectrices 219
13 Pratiques du câblage ... 219
13.1 Raccordement et cheminement ... 219
13.1.1 Exigences générales .. 219
13.1.2 Cheminement des conducteurs et des câbles 220
13.1.3 Conducteurs appartenant à des circuits différents 220
13.1.4 Circuits à courant alternatif – Effets électromagnétiques (prévention des
courants de Foucault) .. 221
13.1.5 Raccordement entre le détecteur et le convertisseur détecteur d’un
système d’alimentation à induction ... 221
13.2 Identification des conducteurs .. 221
13.2.1 Exigences générales .. 221
13.2.2 Identification du conducteur de protection/ conducteur de liaison de
protection .. 221
13.2.3 Identification du conducteur neutre ... 222
13.2.4 Identification par la couleur .. 222
13.3 Câblage à l’intérieur des enveloppes .. 223
13.4 Câblage à l’extérieur des enveloppes .. 223
13.4.1 Exigences générales .. 223
13.4.2 Canalisations externes ... 224
13.4.3 Raccordement aux éléments mobiles de la machine .. 224
13.4.4 Interconnexion des appareils sur la machine ... 225
13.4.5 Ensembles fiche-prise ... 225
13.4.6 Démontage pour le transport ... 226
13.4.7 Conducteurs supplémentaires ... 226
13.5 Canalisations, boîtiers de connexion et autres boîtiers .. 226
13.5.1 Exigences générales .. 226
13.5.2 Conduit métallique rigide et accessoires .. 227
13.5.3 Conduit métallique souple et accessoires .. 227
13.5.4 Conduit non métallique souple et accessoires ... 227
13.5.5 Système de goulottes .. 228
13.5.6 Compartiments de machine et systèmes de goulottes .. 228
13.5.7 Boîtiers de connexion et autres boîtiers ... 228
13.5.8 Boîtiers de connexion de moteur .. 228
14 Moteurs électriques et équipements associés .. 228
14.1 Exigences générales ... 228
14.2 Enveloppes des moteurs ... 229
14.3 Dimensions des moteurs ... 229
14.4 Montage des moteurs et compartiments moteurs .. 229
14.5 Critères de choix des moteurs ... 229
14.6 Dispositifs de protection pour les freins mécaniques .. 230
15 Socles de prises de courant et éclairage ... 230
15.1 Socles de prises de courant pour les accessoires .. 230
15.2 Éclairage local de la machine et de l’équipement .. 230
15.2.1 Généralités .. 230
15.2.2 Alimentation .. 230
15.2.3 Protection .. 231
15.2.4 Accessoires ... 231
16 Marquages, panneaux d'avertissement et désignations de référence 231
16.1 Généralités ... 231
16.2 Panneaux d'avertissement ... 232
16.2.1 Danger de choc électrique ... 232
16.2.2 Danger lié aux surfaces chaudes ... 232
16.3 Identification fonctionnelle .. 232
16.4 Marquage des enveloppes des équipements électriques ... 232
16.5 Désignations de référence ... 233
17 Documentation technique .. 233
17.1 Généralités .. 233
17.2 Informations relatives à l’équipement électrique .. 233
18 Vérification ... 235
18.1 Généralités ... 235
18.2 Vérification des conditions de protection par coupure automatique de l'alimentation ... 235
18.2.1 Généralités .. 235
18.2.2 Essai 1 – Vérification de la continuité du circuit de protection 236
18.2.3 Essai 2 – Vérification de l’impédance de boucle de défect et aptitude du dispositif de protection contre les surintensités associé .. 236
18.2.4 Application des méthodes d'essai aux schémas TN................................. 236
18.3 Essais de résistance d'isolement ... 238
18.4 Essais de tension ... 239
18.5 Protection contre les tensions résiduelles ... 239
18.6 Essais de fonctionnement .. 239
18.7 Contre-essais .. 239
Annexe A (normative) Protection en cas de défaut par coupure automatique de l'alimentation ... 240
A.1 Protection en cas de défaut pour les machines alimentées par les schémas TN ... 240
A.1.1 Généralités .. 240
A.1.2 Conditions pour la protection par coupure automatique de l'alimentation par des dispositifs de protection contre les surintensités ... 241
A.1.3 Condition pour la protection par diminution de la tension de contact en dessous de 50 V ... 241
A.1.4 Vérification des conditions pour la protection par coupure automatique de l'alimentation ... 242
A.2 Protection en cas de défaut pour les machines alimentées par les schémas TT .. 244
A.2.1 Connexion à la terre ... 244
A.2.2 Protection en cas de défaut pour les schémas TT 244
A.2.3 Vérification de la protection par coupure automatique de l'alimentation au moyen d'un dispositif différentiel résiduel ... 246
A.2.4 Mesurage de l'impédance de boucle de défaut (Zs) 246
Annexe B (informatif) Questionnaire concernant l'équipement électrique des machines .. 248
Annexe C (informatif) Exemples de machines couvertes par la présente partie de l'IEC 60204 .. 252
Annexe D (informatif) Courant maximal admissible et protection contre les surintensités des conducteurs et câbles dans les équipements électriques des machines .. 254
D.1 Généralités .. 254
D.2 Conditions générales de fonctionnement ... 254
D.2.1 Température de l'air ambiant .. 254
D.2.2 Méthodes d'installation .. 254
D.2.3 Groupement ... 255
D.2.4 Classification des conducteurs .. 256
D.3 Coordination entre les conducteurs et les dispositifs de protection assurant une protection contre les surcharges .. 257
D.4 Protection des conducteurs contre les surintensités 258
D.5 Effets des courants harmoniques dans les systèmes triphasés équilibrés 259
Annexe E (informatif) Explication sur les fonctions de manœuvre d'urgence .. 260
Annexe F (informatif) Guide pour l'utilisation de la présente partie de l'IEC 60204 .. 261
Annexe G (informatif) Comparaison des sections typiques de conducteurs .. 263
Annexe H (informatif) Mesures de réduction des effets des influences électromagnétiques ... 265
H.1 Définitions .. 265
H.1.1 appareil ... 265
H.1.2 installation fixe .. 265
H.2 Généralités .. 265
H.3 Réduction du brouillage électromagnétique (EMI) 265
Figure H.1 – Conducteur de dérivation pour le renforcement du blindage .. 266
Figure H.2 – Exemples de séparation verticale et de différenciation ... 268
Figure H.3 – Exemples de séparation horizontale et de différenciation ... 268
Figure H.4 – Dispositions des câbles dans des chemins de câbles métalliques 269
Figure H.5 – Connexions entre les chemins de câbles ou les systèmes de goulottes métalliques ... 270
Figure H.6 – Interruption des chemins de câbles métalliques au niveau des pare-feu 270

Tableau 1 – Section minimale des conducteurs de protection en cuivre .. 166
Tableau 2 – Symboles pour organes de commande (Alimentation) .. 206
Tableau 3 – Symboles pour organes de commande (Fonctionnement de la machine) 206
Tableau 4 – Couleurs des voyants lumineux de signalisation et leur signification en fonction de l’état de la machine ... 207
Tableau 5 – Sections minimales des conducteurs en cuivre ... 214
Tableau 6 – Exemples de courant maximal admissible (Iz) pour conducteurs ou câbles en cuivre isolés au PVC, dans des conditions de régime permanent, pour une température ambiante de +40 °C, pour différentes méthodes d’installation 215
Tableau 7 – Facteurs de réduction pour des câbles enroulés sur tambours 217
Tableau 8 – Rayon minimal de courbure admis pour le guidage forcé de câbles souples 225
Tableau 9 – Application des méthodes d’essai aux schémas TN .. 237
Tableau 10 – Exemples de longueurs de câbles maximales entre les dispositifs de protection et leurs charges pour les schémas TN .. 238
Tableau A.1 – Temps de coupure maximal pour les schémas TN ... 240
Tableau A.2 – Temps de coupure maximal pour les schémas TT ... 245
Tableau D.1 – Facteurs de correction .. 254
Tableau D.2 – Facteurs de réduction de Iz pour groupement ... 256
Tableau D.3 – Facteurs de réduction de Iz pour les câbles multiconducteurs jusqu’à 10 mm² 256
Tableau D.4 – Classification des conducteurs ... 256
Tableau D.5 – Températures maximales admissibles du conducteur dans des conditions normales et des conditions de court-circuit ... 258
Tableau F.1 – Options d’utilisation ... 262
Tableau G.1 – Comparaison des dimensions de conducteurs ... 263
Tableau H.1 – Distances de séparation minimales utilisant une enceinte de confinement métallique comme représenté à la Figure H.2 ... 267
Tableau I.1 – Documentation / Information qui peuvent être applicables 271

This is a preview - click here to buy the full publication
SÉCURITÉ DES MACHINES – ÉQUIPEMENT ÉLECTRIQUE DES MACHINES –

Partie 1: Exigences générales

AVANT-PROPOS

2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.

3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agrées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 60204-1 a été établie par le comité d'études 44 de l'IEC: Sécurité des machines – Aspects électrotechniques.

Cette sixième édition annule et remplace la cinquième édition parue en 2005. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

a) exigences supplémentaires pour traiter des applications impliquant des systèmes d’entraînements électriques de puissance (PDS);

b) exigences révisées concernant la compatibilité électromagnétique (CEM);

c) clarification des exigences de protection contre les surintensités;
d) exigences pour la détermination des caractéristiques du courant de court-circuit de l'équipement électrique;

e) révision des exigences de liaisons de protection et la terminologie;

f) réorganisation et révision à l'Article 9, notamment les exigences relatives à la suppression sûre du couple du PDS, à l'arrêt d'urgence, et à la protection du circuit de commande;

g) révision des symboles pour les organes de commande des appareils de commande;

h) révision des exigences sur la documentation technique;

i) mise à jour générale des conditions nationales particulières, des normes et des références bibliographiques.

Le texte de cette norme est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>44/765/FDIS</td>
<td>44/771/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 60204, publiées sous le titre général Sécurité des machines – Équipement électrique des machines, peut être consultée sur le site web de l'IEC.

Les différentes pratiques suivantes, à caractère moins permanent, existent dans les pays indiqués ci-après:

4.3.1 Les caractéristiques de la tension fournie par les réseaux de distribution publics en Europe sont données dans l'EN 50160:2010.

5.1: Exception non admise (États-Unis).

5.1: Les schémas TN-C ne sont pas autorisés dans les installations à basse tension dans les bâtiments (Norrège).

5.2: Les bornes pour le raccordement des conducteurs de mise à la terre pour des raisons de protection peuvent être identifiées par la couleur verte, les lettres "G" ou "GR", "GRD" ou "GND", ou les mots "ground" ou "grounding" ou le symbole graphique IEC 60417-5019:2006-08 ou toute combinaison (États-Unis).

6.3.3 b), 13.4.5 b), 18.2.1: Les schémas TT de puissance ne sont pas admis (États-Unis).

6.3.3 b): L'utilisation de dispositifs différentiels résiduels avec un courant de fonctionnement résiduel assigné de 1 A au maximum est obligatoire dans les schémas TT, ces dispositifs servant de moyen de protection en cas de défaut par une coupure automatique de l'alimentation (Italie).

7.2.3 La coupure du conducteur neutre est obligatoire dans un schéma TN-S (France et Norvège).

7.2.3 Troisième alinéa: la distribution d'un conducteur neutre dans un schéma IT n'est pas admise (États-Unis et Norvège).

7.10: Pour l'évaluation des caractéristiques assignées en court-circuit, les exigences du document UL 508A Supplement SB, peuvent être utilisées (États-Unis).

8.2.2 Voir IEC 60364-5-54:2011, Annexe E, Liste des notes concernant certains pays.

9.1.2 La tension nominale maximale d'un circuit de commande en courant alternatif est de 120 V (États-Unis).

12.2: Seuls les conducteurs à âme câblée sont admis sur les machines, sauf pour les conducteurs massifs de section 0,2 mm² dans les enveloppes (États-Unis).
12.2: Le conducteur de circuit de puissance le plus faible admis sur les machines est de 0,82 mm² (AWG 18) pour des conducteurs multifilaires ou dans les enveloppes (États-Unis).

Tableau 5: La section est spécifiée dans la NFPA 79 en dimensions américaines (AWG) (États-Unis). Voir Annexe G.

13.2.2 Pour le conducteur de protection, la couleur VERTE (avec ou sans bandes JAUNES) est utilisée comme équivalent à la combinaison bicolore VERT-et-JAUNE (États-Unis et Canada).

13.2.3 La couleur BLANC ou GRIS est utilisée pour repérer les conducteurs neutres mis à la terre au lieu de la couleur BLEU (États-Unis et Canada).

15.2.2 Premier alinéa: Valeur maximale entre conducteurs 150 V (États-Unis).

15.2.2 Deuxième alinéa, 5ème tiret: Le courant assigné à pleine charge des circuits d'éclairage ne dépasse pas 15 A (États-Unis).

16.4: Exigences de marquage de plaque signalétique (États-Unis).

A.2.2.2: La valeur maximale admissible de R_A est réglementée (par exemple, lorsque $U_o \geq 300$ V, R_A doit être inférieure à 10 Ω, lorsque $U_o < 300$ V, R_A doit être inférieure à 100 Ω, U_o est la tension phase-terre alternative nominale en volts (V) (Japon).

A.2.2.2: La valeur maximale admissible de R_A est 83 Ω (Pays-Bas).

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.
INTRODUCTION

La présente partie de l'IEC 60204 fournit les exigences et recommandations relatives à l'équipement électrique des machines en vue d'améliorer:

- la sécurité des personnes et des biens;
- la cohérence de réponse des commandes;
- la facilité de fonctionnement et de la maintenance.

Des préconisations complémentaires sur l'utilisation de la présente partie de l'IEC 60204 sont données dans l'Annexe F.

La Figure 1 est fournie en tant qu'aide pour la compréhension des relations entre les différents éléments d'une machine et ses équipements associés. La Figure 1 est un schéma d'ensemble d'une machine type et de ses équipements associés représentant les divers éléments de l'équipement électrique explicités dans la présente partie de l'IEC 60204. Les chiffres entre parenthèses () renvoient aux Articles et Paragraphes de la présente partie de l'IEC 60204. La Figure 1 part du principe que la totalité des éléments pris ensemble y compris les moyens de protection, outillages/auxiliaires, logiciels et la documentation constituent la machine et que celle-ci ou plusieurs machines fonctionnant ensemble avec habituellement au moins un niveau de supervision constituent une cellule ou un système de production.
Figure 1 – Schéma d’ensemble d’une machine type
1 Domaine d’application

La présente partie de l’IEC 60204 s’applique aux équipements et systèmes électriques, électroniques et électroniques programmables des machines non portables à la main en fonctionnement y compris un groupe de machines fonctionnant ensemble d’une manière coordonnée.

NOTE 1 La présente partie de l’IEC 60204 est une norme d’application et n’est pas destinée à limiter ou inhiber les progrès technologiques.

NOTE 2 Dans la présente partie de l’IEC 60204, le terme électrique signifie électrique, électronique et électronique programmable (c’est-à-dire qu’un équipement électrique signifie un équipement électrique, électronique et électronique programmable).

NOTE 3 Dans le cadre de la présente partie de l’IEC 60204, le terme personne s’applique à n’importe quel individu et indique les personnes désignées et averties par l’utilisateur ou son ou ses agents pour l’utilisation ou la maintenance de la machine concernée.

L’équipement couvert par la présente partie de l’IEC 60204 commence au point de connexion de l’alimentation à l’équipement électrique de la machine (voir 5.1).

NOTE 4 Les exigences concernant l’installation de l’alimentation électrique sont données dans la série IEC 60364.

La présente partie de l’IEC 60204 est applicable à l’équipement électrique ou aux parties de l’équipement électrique qui fonctionnent sous des tensions d’alimentation nominales ne dépassant pas 1 000 V en courant alternatif ou 1 500 V en courant continu et pour des fréquences nominales d’alimentation ne dépassant pas 200 Hz.

NOTE 5 Les informations sur l’équipement électrique ou les parties de l’équipement électrique qui fonctionnent sous des tensions d’alimentation nominales plus élevées peuvent être consultées dans l’IEC 60204-11.

La présente partie de l’IEC 60204 ne couvre pas toutes les exigences (par exemple, la protection, le verrouillage ou la commande) qui sont nécessaires ou exigées par d’autres normes ou réglementations destinées à protéger les personnes contre des dangers autres que les dangers électriques. Chaque type de machine répond à des exigences propres à prendre en compte pour assurer la sécurité appropriée.

La présente partie de l’IEC 60204 inclut spécifiquement, sans toutefois s’y limiter, l’équipement électrique des machines telles que définies en 3.1.40.

NOTE 6 L’Annexe C donne une liste d’exemples de machines dont l’équipement électrique peut être couvert par la présente partie de l’IEC 60204.

La présente partie de l’IEC 60204 ne spécifie pas les exigences complémentaires et particulières qui peuvent s’appliquer à l’équipement électrique des machines qui, par exemple:

− sont destinées à être utilisées à l’air libre (c’est-à-dire à l’extérieur de bâtiments ou d’autres structures de protection);
− utilisent, traitent ou produisent des matériaux potentiellement explosifs (par exemple de la peinture ou de la sciure);
– sont destinées à être utilisées dans des atmosphères explosibles ou potentiellement inflammables;
– présentent des risques particuliers lors de la fabrication ou de l'utilisation de certains matériaux;
– sont destinées à être utilisées dans les mines;
– sont des machines, unités ou systèmes de couture (couverts par l'IEC 60204-31);
– sont des appareils de levage (couverts par l'IEC 60204-32).
– sont des équipements de fabrication des semi-conducteurs (couverts par l'IEC 60204-33).

Les circuits de puissance, dans lesquels l'énergie électrique est utilisée directement comme outil de travail, sont exclus de la présente partie de l'IEC 60204.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60034-1, *Machines électriques tournantes – Partie 1: Caractéristiques assignées et caractéristiques de fonctionnement*

IEC 60072 (toutes les parties), *Dimensions et séries de puissances des machines électriques tournantes*

IEC 60309-1, *Prises de courant pour usages industriels – Partie 1: Règles générales*

IEC 60364-1, *Installations électriques à basse tension – Partie 1: Principes fondamentaux, détermination des caractéristiques générales, définitions*

IEC 60364-4-41:2005, *Installations électriques à basse tension – Partie 4-41: Protection pour assurer la sécurité – Protection contre les chocs électriques*

IEC 60364-5-54:2011, *Installations électriques basse-tension – Partie 5-54: Choix et mise en œuvre des matériels électriques – Installations de mise à la terre et conducteurs de protection*

IEC 60445:2010, *Principes fondamentaux et de sécurité pour les interfaces homme-machines, le marquage et l'identification – Identification des bornes de matériels, des extrémités de conducteurs et des conducteurs*

IEC 60529, *Degrés de protection procurés par les enveloppes (Code IP)*
IEC 60204-1:2016 © IEC 2016 – 151 –

IEC 60664-1, Coordination de l'isolation des matériels dans les systèmes (réseaux) à basse tension – Partie 1: Principes, exigences et essais

IEC 60947-2, Appareillage à basse tension – Partie 2: Disjoncteurs

IEC 60947-3, Appareillage à basse tension – Partie 3: Interrupteurs, sectionneurs, interrupteurs-sectionneurs et combinés-fusibles

IEC 60947-5-1:2003, Appareillage à basse tension – Partie 5-1: Appareils et éléments de commutation pour circuits de commande – Appareils électromécaniques pour circuits de commande
IEC 60947-5-1:2003/AMD1:2009

IEC 60947-5-5, Appareillage à basse tension – Partie 5-5: Appareils et éléments de commutation pour circuits de commande – Appareil d'arrêt d'urgence électrique à accrochage mécanique

IEC 60947-6-2, Appareillage à basse tension – Partie 6-2: Matériels à fonctions multiples – Appareils (ou matériel) de connexion de commande de protection (ACP)

IEC 61140, Protection contre les chocs électriques – Aspects communs aux installations et aux matériels

IEC 61310 (toutes les parties), Sécurité des machines – Indication, marquage, manœuvre

IEC 61439-1, Ensembles d'appareillage à basse tension – Partie 1: Règles générales

IEC 61558-1:2005, Sécurité des transformateurs, alimentations, bobines d'inductance et produits analogues – Partie 1: Exigences générales et essais
IEC 61558-1:2005/AMD1:2009

IEC 61558-2-6, Sécurité des transformateurs, bobines d'inductance, blocs d'alimentation et produits analogues pour des tensions d'alimentation jusqu'à 1 100 V – Partie 2-6: Règles particulières et essais pour les transformateurs de sécurité et les blocs d'alimentation incorporant des transformateurs de sécurité

IEC 61984, Connecteurs – Exigences de sécurité et essais

IEC 62023, Structuration des informations et de la documentation techniques

IEC 62061, Sécurité des machines – Sécurité fonctionnelle des systèmes de commande électriques, électroniques et électroniques programmables relatifs à la sécurité

ISO 7010:2011, Symboles graphiques – Couleurs de sécurité et signaux de sécurité – Signaux de sécurité enregistrés

ISO 13849-1, Sécurité des machines – Parties des systèmes de commande relatives à la sécurité – Partie 1: Principes généraux de conception

ISO 13849-2, Sécurité des machines – Parties des systèmes de commande relatives à la sécurité – Partie 2: Validation

ISO 13850:2006, Sécurité des machines – Fonction d'arrêt d'urgence – Principes de conception