INTERNATIONAL STANDARD

NORME INTERNATIONALE

BASIC SAFETY PUBLICATION
PUBLICATION FONDAMENTALE DE SÉCURITÉ

Insulation coordination for equipment within low-voltage supply systems – Part 1: Principles, requirements and tests

Coordination de l’isolement des matériels dans les réseaux d’énergie électrique à basse tension – Partie 1: Principes, exigences et essais

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.080.30

Warning! Make sure that you obtained this publication from an authorized distributor.
Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.
CONTENTS

FOREWORD ...6

1 Scope ..6
2 Normative references ..8
3 Terms, definitions and abbreviated terms ..9
 3.1 Terms and definitions ..9
 3.2 Abbreviated terms ..15
4 Basic technical characteristics for insulation coordination ...15
 4.1 General ..15
 4.2 Voltages ...16
 4.2.1 General aspects ..16
 4.2.2 Transient overvoltages ..17
 4.2.3 Temporary overvoltages ...18
 4.2.4 Recurring peak voltage ...18
 4.2.5 Steady-state working voltage ..19
 4.2.6 Steady-state peak voltage ..19
 4.3 Overvoltage categories ...19
 4.3.1 General ..19
 4.3.2 Equipment energized directly from the mains supply ...19
 4.3.3 Systems and equipment not energized directly from the mains supply20
 4.4 Frequency ..20
 4.4.1 General ..20
 4.4.2 Solid insulation ..20
 4.5 Pollution ..20
 4.5.1 General ..20
 4.5.2 Degrees of pollution in the micro-environment ...21
 4.5.3 Conditions of conductive pollution ..21
 4.6 Insulating material ...21
 4.6.1 Solid insulation ..21
 4.6.2 Stresses ..22
 4.6.3 Comparative tracking index (CTI) ..23
 4.7 Environmental aspects ...24
 4.7.1 General ..24
 4.7.2 Altitude ..24
 4.7.3 Temperature ..24
 4.7.4 Vibrations ...24
 4.7.5 Humidity ..24
 4.8 Duration of voltage stress ..24
 4.9 Electrical field distribution ..25
5 Design for insulation coordination ..25
 5.1 General ..25
 5.1.1 Means of insulation coordination ..25
 5.1.2 Frequency above 30 kHz ...25
 5.1.3 Reduced distances due to coating or potting ...25
 5.1.4 Equipment which are not connected to public low-voltage systems25
 5.2 Dimensioning of clearances ...25
 5.2.1 General ..25
C.1.1 General ...58
C.1.2 Test circuit for earthed test specimen (Figure C.1) ...58
C.1.3 Test circuit for unearthed test specimen (Figure C.2) ..59
C.1.4 Selection criteria ..59
C.1.5 Measuring impedance ..59
C.1.6 Coupling capacitor C_k ..59
C.1.7 Filter ..59
C.2 Test parameters ..59
C.2.1 General ...59
C.2.2 Requirements for the test voltage ...60
C.2.3 Climatic conditions ..60
C.3 Requirements for measuring instruments ..60
C.3.1 General ...60
C.3.2 Classification of PD meters ..60
C.3.3 Bandwidth of the test circuit ...61
C.4 Calibration ...61
C.4.1 Calibration of discharge magnitude before the noise level measurement61
C.4.2 Verification of the noise level ...62
C.4.3 Calibration for the PD test ...63
C.4.4 Calibration pulse generator ..63
Annex D (informative) Additional information on partial discharge test methods64
D.1 Measurement of partial discharge (PD), PD inception and extinction voltage64
D.2 Description of PD test circuits (Figure D.1) ..64
D.3 Precautions for reduction of noise ..65
D.3.1 General ...65
D.3.2 Sources in the non-energized test circuit ..65
D.3.3 Sources in the energized test circuit ...65
D.3.4 Measures for reduction of noise ...65
D.4 Application of multiplying factors for test voltages ...65
D.4.1 General ...65
D.4.2 Example 1 (circuit connected to mains supply) ...66
D.4.3 Example 2 (internal circuit with maximum recurring peak voltage U_{rp})66
Annex E (informative) Comparison of creepage distances specified in Table F.5 and clearances in Table A.1 ..67
Annex F (normative) Tables ..68
Annex G (informative) Determination of clearance distances according to 5.277
Annex H (informative) Determination of creepage distances according to 5.379
Bibliography ..81

Figure 1 – Recurring peak voltage ...19
Figure 2 – Determination of the width (W) and height (H) of a rib31
Figure 3 – Test voltages ...42
Figure 4 – Across the groove ..46
Figure 5 – Contour of the groove ..47
Figure 6 – Contour of the groove with angle ..47
Figure 7 – Contour of rib ..47
Figure 8 – Uncemented joint with grooves less than X ..48
Figure 9 – Uncemented joint with grooves equal to or more than X 48
Figure 10 – Uncemented joint with a groove on one side less than X 49
Figure 11 – Creepage distance and clearance through an uncemented joint.................. 49
Figure 12 – Creepage distance and clearance to a head of screw more than X 49
Figure 13 – Creepage distance and clearance to a head of screw less than X............... 50
Figure 14 – Creepage distance and clearance with conductive floating part............... 50
Figure A.1 – Withstand voltage at 2 000 m above sea level... 53
Figure A.2 – Experimental data measured at approximately sea level and their low limits for inhomogeneous field... 54
Figure A.3 – Experimental data measured at approximately sea level and their low limits for homogeneous field... 55
Figure C.1 – Earthed test specimen.. 58
Figure C.2 – Unearthed test specimen ... 59
Figure C.3 – Calibration for earthed test specimen... 62
Figure C.4 – Calibration for unearthed test specimen... 62
Figure D.1 – Partial discharge test circuits... 64
Figure E.1 – Comparison between creepage distances specified in Table F.5 and clearances in Table A.1 ... 67
Figure G.1 – Determination of clearance distances according to 5.2 (1 of 2).............. 77
Figure H.1 – Determination of creepage distances according to 5.3 (1 of 2)............ 79

Table 1 – Dimensioning of grooves ... 46
Table A.1 – Withstand voltages for an altitude of 2 000 m above sea level (1 of 2)........ 51
Table A.2 – Altitude correction factors for clearance correction..................................... 52
Table B.1 – Inherent control or equivalent protective control.. 56
Table B.2 – Cases where protective control is necessary and control is provided by surge protective device having a ratio of voltage protection level to rated voltage not smaller than that specified in IEC 61643 (all parts) ... 57
Table F.1 – Rated impulse withstand voltage for equipment energized directly from the mains supply .. 68
Table F.2 – Clearances to withstand transient overvoltages.. 69
Table F.3 – Single-phase three-wire or two-wire AC or DC systems 70
Table F.4 – Three-phase four-wire or three-wire AC systems.. 71
Table F.5 – Creepage distances to avoid failure due to tracking (1 of 2) 72
Table F.6 – Test voltages for verifying clearances only at different altitudes............. 74
Table F.7 – Severities for conditioning of solid insulation.. 74
Table F.8 – Dimensioning of clearances to withstand steady-state peak voltages, temporary overvoltages or recurring peak voltages b ... 75
Table F.9 – Additional information concerning the dimensioning of clearances to avoid partial discharge .. 75
Table F.10 – Altitude correction factors for clearance correction.................................. 76
INTERNATIONAL ELECTROTECHNICAL COMMISSION

INSULATION COORDINATION FOR EQUIPMENT WITHIN LOW-VOLTAGE SUPPLY SYSTEMS –

Part 1: Principles, requirements and tests

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as ‘IEC Publication(s)’). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60664-1 has been prepared by IEC technical committee 109: Insulation co-ordination for low-voltage equipment.

This third edition cancels and replaces the second edition published in 2007. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) update of the Scope, Clauses 2 and 3,

b) new structure for Clauses 4 and 5,

c) addition of 1 500 V DC into tables in Annex B and F,

d) update of distances altitude correction in a new Table F.10,

e) addition of Annex G with a flowchart for clearances,
f) addition of Annex H with a flowchart for creepage distances.

It has the status of a basic safety publication in accordance with IEC Guide 104.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>109/183/FDIS</td>
<td>109/186/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60664 series, published under the general title *Insulation coordination for equipment within low-voltage supply systems*, can be found on the IEC website.

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

In this document, the following print type is used:

- **Terms defined in Clause 3: in bold type.**

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

The contents of the corrigendum of October 2020 have been included in this copy.
1 Scope

This part of IEC 60664 deals with insulation coordination for equipment having a rated voltage up to AC 1 000 V or DC 1 500 V connected to low-voltage supply systems.

This document applies to frequencies up to 30 kHz.

NOTE 1 Requirements for insulation coordination for equipment within low-voltage supply systems with rated frequencies above 30 kHz are given in IEC 60664-4.

NOTE 2 Higher voltages can exist in internal circuits of the equipment.

It applies to equipment for use up to 2 000 m above sea level and provides guidance for use at higher altitudes (See 5.2.3.4).

It provides requirements for technical committees to determine clearances, creepage distances and criteria for solid insulation. It includes methods of electrical testing with respect to insulation coordination.

The minimum clearances specified in this document do not apply where ionized gases are present. Special requirements for such situations can be specified at the discretion of the relevant technical committee.

This document does not deal with distances:

– through liquid insulation;
– through gases other than air;
– through compressed air.

This basic safety publication focusing on safety essential requirements is primarily intended for use by technical committees in the preparation of standards in accordance with the principles laid down in IEC Guide 104 and ISO/IEC Guide 51.

One of the responsibilities of a technical committee is, wherever applicable, to make use of basic safety publications in the preparation of its publications.

However, in case of missing specified values for clearances, creepage distances and requirements for solid insulation in the relevant product standards, or even missing standards, this document applies.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-2, Environmental testing – Part 2-2: Tests – Tests B: Dry heat
IEC 60664-1:2020 © IEC 2020

IEC 60068-2-78, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60270, High-voltage test techniques – Partial discharge measurements

IEC 61140:2016, Protection against electric shock – Common aspects for installation and equipment

IEC 61180:2016, High-voltage test techniques for low-voltage equipment – Definitions, test and procedure requirements, test equipment
SOMMAIRE

AVANT-PROPOS .. 89

1 Domaine d’application .. 91

2 Références normatives ... 91

3 Termes, définitions et termes abrégés ... 92
 3.1 Termes et définitions .. 92
 3.2 Termes abrégés ... 99

4 Caractéristiques techniques principales de la coordination de l’isolement 99
 4.1 Généralités .. 99
 4.2 Tensions .. 100
 4.2.1 Aspects généraux .. 100
 4.2.2 Surtensions transitoires .. 100
 4.2.3 Surtensions temporaires .. 101
 4.2.4 Tension de crête répétitive ... 102
 4.2.5 Tension locale en régime établi ... 102
 4.2.6 Tension de crête en régime établi ... 103
 4.3 Catégories de surtension .. 103
 4.3.1 Généralités .. 103
 4.3.2 Matériel alimenté directement par le réseau d’alimentation 103
 4.3.3 Systèmes (réseaux) et matériels non alimentés directement par le réseau d’alimentation .. 103
 4.4 Fréquence .. 104
 4.4.1 Généralités .. 104
 4.4.2 Isolation solide .. 104
 4.5 Pollution .. 104
 4.5.1 Généralités .. 104
 4.5.2 Degrés de pollution dans le micro-environnement .. 104
 4.5.3 Conditions de pollution conductrice .. 105
 4.6 Matériau isolant ... 105
 4.6.1 Isolation solide .. 105
 4.6.2 Contraintes ... 105
 4.6.3 Indice de résistance au cheminement (IRC) .. 106
 4.7 Aspects environnementaux .. 107
 4.7.1 Généralités .. 107
 4.7.2 Altitude .. 107
 4.7.3 Température .. 108
 4.7.4 Vibrations .. 108
 4.7.5 Humidité ... 108
 4.8 Durée de la contrainte de tension .. 108
 4.9 Distribution du champ électrique .. 108

5 Conception de la coordination de l’isolement .. 109
 5.1 Généralités .. 109
 5.1.1 Moyens pour la coordination de l’isolement .. 109
 5.1.2 Fréquence supérieure à 30 kHz ... 109
 5.1.3 Distances réduites dues au revêtement ou à l’emportage 109
 5.1.4 Matériels non raccordés aux réseaux publics d’énergie électrique à basse tension .. 109
5.2 Dimenisonnement des distances d’isolement ... 109
 5.2.1 Généralités .. 109
 5.2.2 Critères de dimensionnement pour les distances d’isolement 110
 5.2.3 Autres facteurs impliquant les distances d’isolement 110
 5.2.4 Dimensionnement des distances d’isolement de l’isolement fonctionnelle 111
 5.2.5 Dimensionnement des distances d’isolement de l’isolement principale, de l’isolement supplémentaire et de l’isolement renforcée ... 112
5.3 Dimensionnement des lignes de fuite ... 112
 5.3.1 Généralités .. 112
 5.3.2 Critères de dimensionnement des lignes de fuite .. 113
 5.3.3 Autres facteurs impliquant les lignes de fuite ... 114
 5.3.4 Dimensionnement des lignes de fuite de l’isolement fonctionnelle 116
 5.3.5 Dimensionnement des lignes de fuite de l’isolement principale, de l’isolement supplémentaire et de l’isolement renforcée ... 116
5.4 Exigences pour la conception de l’isolement solide .. 116
 5.4.1 Généralités .. 116
 5.4.2 Contrainte de tension ... 117
 5.4.3 Tenue aux contraintes de tension ... 117
 5.4.4 Tenue aux contraintes d’environnement ... 118
6 Essais et mesurages ... 119
 6.1 Généralités .. 119
 6.2 Vérification des distances d’isolement ... 119
 6.2.1 Généralités ... 119
 6.2.2 Tensions d’essai ... 120
 6.3 Vérification des lignes de fuite ... 122
 6.4 Vérification de l’isolement solide ... 123
 6.4.1 Généralités ... 123
 6.4.2 Choix des essais ... 123
 6.4.3 Conditionnement ... 124
 6.4.4 Essai de tension de choc ... 125
 6.4.5 Essai en tension alternative à fréquence industrielle 125
 6.4.6 Essai de décharge partielle ... 126
 6.4.7 Essai en tension continue ... 128
 6.4.8 Essai de tension à haute fréquence ... 129
 6.5 Exécution des essais diélectriques sur des matériels complets 129
 6.5.1 Généralités ... 129
 6.5.2 Parties à soumettre à l’essai ... 129
 6.5.3 Préparation des circuits du matériel .. 129
 6.5.4 Valeurs de la tension d’essai ... 130
 6.5.5 Critères d’essai ... 130
 6.6 Autres essais ... 130
 6.6.1 Essai dans un but autre que la coordination de l’isolement 130
 6.6.2 Essais individuels de série et sur prélèvement 130
 6.6.3 Exactitude de mesure des paramètres d’essai .. 130
 6.7 Mesurage de l’affaiblissement des surtensions transitoires 131
 6.8 Mesurage des distances d’isolement et des lignes de fuite 131
Annexe A (informative) Données fondamentales des caractéristiques de tenue des distances d’isolement .. 136
Annexe B (informative) Tensions nominales des réseaux d’alimentation pour différents modes de contrôle des surtensions ... 141
Annexe C (normative) Méthodes d’essai de décharge partielle .. 143

C.1 Circuits d’essai ... 143
C.1.1 Généralités .. 143
C.1.2 Circuit d’essai pour spécimen d’essai relié à la terre (Figure C.1) 143
C.1.3 Circuit d’essai pour spécimen d’essai non relié à la terre (Figure C.2) 144
C.1.4 Critères de sélection .. 144
C.1.5 Impédance de mesure ... 144
C.1.6 Condensateur de couplage \(C_k \) ... 144
C.1.7 Filtre .. 144
C.2 Paramètres d’essai ... 145
C.2.1 Généralités ... 145
C.2.2 Exigences relatives à la tension d’essai .. 145
C.2.3 Conditions climatiques .. 145
C.3 Exigences relatives aux appareils de mesure .. 145
C.3.1 Généralités .. 145
C.3.2 Classification des appareils de mesure de DP .. 145
C.3.3 Bande passante du circuit d’essai .. 146
C.4 Étalonnage .. 146
C.4.1 Étalonnage de la grandeur de décharge avant mesurage du niveau de bruit ... 146
C.4.2 Vérification du niveau de bruit ... 147
C.4.3 Étalonnage pour l’essai de DP .. 148
C.4.4 Générateur d’impulsions d’étalonnage ... 148

Annexe D (informative) Informations complémentaires sur les méthodes d’essai de décharge partielle .. 149

D.1 Mesurage de la décharge partielle (DP), de la tension de seuil de DP et de la tension d’extinction de DP ... 149
D.2 Description des circuits d’essai de décharge partielle (Figure D.1) 149
D.3 Précautions à prendre pour la réduction du bruit .. 150
D.3.1 Généralités .. 150
D.3.2 Sources dans le circuit d’essai en état de repos .. 150
D.3.3 Sources dans le circuit d’essai sous tension .. 150
D.3.4 Mesures à prendre pour la réduction du bruit .. 150
D.4 Application des facteurs de multiplication aux tensions d’essai 151
D.4.1 Généralités .. 151
D.4.2 Exemple 1 (circuit connecté au réseau d’alimentation) 151
D.4.3 Exemple 2 (Circuit interne avec tension de crête répétitive maximale \(U_{rp} \)) .. 151

Annexe E (informative) Comparaison entre les lignes de fuite du Tableau F.5 et les distances d’isolement du Tableau A.1 ... 152

Annexe F (normative) Tableaux ... 153

Annexe G (informative) Détermination des distances d’isolement selon 5.2 162

Annexe H (informative) Détermination des lignes de fuite selon 5.3 164

Bibliographie ... 166

Figure 1 – Tension de crête répétitive .. 102

Figure 2 – Détermination de la largeur (\(W \)) et de la hauteur (\(H \)) d’une nervure .. 115

Figure 3 – Tensions d’essai ... 127
Figure 4 – Au-dessus de la rainure ... 132
Figure 5 – Contour de la rainure ... 132
Figure 7 – Contour de la nervure .. 133
Figure 8 – Joint non collé avec des rainures de largeur inférieure à \(X \) 133
Figure 9 – Joint non collé avec des rainures de largeur égale ou supérieure à \(X \) ... 133
Figure 10 – Joint non collé avec d'un côté une rainure de largeur inférieure à \(X \) ... 134
Figure 11 – Ligne de fuite et distance d'isolement à travers un joint non collé........ 134
Figure 12 – Ligne de fuite et distance d'isolement par rapport à une tête de vis de largeur supérieure à \(X \) ... 134
Figure 13 – Ligne de fuite et distance d'isolement par rapport à une tête de vis de largeur inférieure à \(X \) ... 135
Figure 14 – Ligne de fuite et distance d'isolement avec une partie conductrice flottante ... 135
Figure A.1 – Tension de tenue à 2 000 m au-dessus du niveau de la mer 138
Figure A.2 – Valeurs expérimentales mesurées approximativement au niveau de la mer avec leurs limites inférieures pour les champs hétérogènes .. 139
Figure A.3 – Valeurs expérimentales mesurées approximativement au niveau de la mer avec leurs limites inférieures pour les champs homogènes ... 140
Figure C.1 – Spécimen d’essai relié à la terre ... 143
Figure C.2 – Spécimen d’essai non relié à la terre ... 144
Figure C.3 – Étalonnage d’un spécimen d’essai relié à la terre .. 147
Figure C.4 – Étalonnage d’un spécimen d’essai non relié à la terre 147
Figure D.1 – Circuits d’essai de décharge partielle ... 149
Figure E.1 – Comparaison entre les lignes de fuite spécifiées du Tableau F.5 et les distances d’isolement du Tableau A.1 .. 152
Figure G.1 – Détermination des distances d’isolement selon 5.2 (1 sur 2) 162
Figure H.1 – Détermination des lignes de fuite selon 5.3 (1 sur 2) 164

Tableau 1 – Dimensionnement des rainures.. 131
Tableau A.1 – Tensions de tenue pour une altitude de 2 000 m au-dessus du niveau de la mer .. 136
Tableau A.2 – Facteurs de correction de l’altitude pour la correction des distances d’isolement ... 137
Tableau B.1 – Situation naturelle ou situation contrôlée équivalente 141
Tableau B.2 – Cas où une situation contrôlée est nécessaire et où le contrôle est procuré par des dispositifs de protection contre les surtensions dont le rapport du niveau de protection de la tension à la tension assignée n’est pas inférieur à celui spécifié dans l’IEC 61643 (toutes les parties) ... 142
Tableau F.1 – Tension assignée de tenue aux chocs pour les matériels alimentés directement par le réseau d’alimentation... 153
Tableau F.2 – Distances d’isolement pour supporter les surtensions transitoires 154
Tableau F.3 – Réseaux monophasés 3 fils ou 2 fils en courant alternatif ou continu 155
Tableau F.4 – Réseaux alternatifs triphasés 4 fils ou 3 fils ... 156
Tableau F.5 – Lignes de fuite pour éviter les défaillances dues au cheminement (1 sur 2) ... 157
Tableau F.6 – Tensions d’essai pour vérifier les distances d’isolement à différentes altitudes ... 159
Tableau F.7 – Sévérités pour le conditionnement de l’isolation solide ... 159
Tableau F.8 – Dimensionnement des distances d'isolation pour résister aux tensions de crête en régime établi, aux surtensions temporaires ou aux tensions de crête répétitives b ... 160
Tableau F.9 – Informations complémentaires pour le dimensionnement des distances d’isolation pour éviter les décharges partielles .. 160
Tableau F.10 – Facteurs de correction d’altitude pour la correction des distances d’isolement ... 161
COORDINATION DE L’ISOLEMENT DES MATÉRIELS DANS LES RÉSEAUX D’ÉNERGIE ÉLECTRIQUE À BASSE TENSION –

Partie 1: Principes, exigences et essais

AVANT-PROPOS

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés sont représentés dans chaque comité d’études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC s’assure de l’exactitude du contenu technique de ses publications ; l’IEC ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l’IEC. L’IEC n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC, ou au crédit qui lui est accordé. Leur élaboration est confiée à des comités d’études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent également aux travaux.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 60664-1 a été établie par le comité d’études 109 de l’IEC: Coordination de l’isolement pour le matériel à basse tension.

Cette troisième édition annule et remplace la deuxième édition parue en 2007. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:

a) mise à jour du Domaine d’application et des Articles 2 et 3,

b) nouvelle structure pour les Articles 4 et 5,

c) ajout de 1 500 V en courant continu dans les tableaux dans Annexe B et F,
d) mise à jour de la correction de l'altitude des distances dans un nouveau Tableau F.10,
e) ajout d’une Annexe G avec un organigramme relatif aux distances d’isolement,
f) ajout d’une Annexe H avec un organigramme relatif aux lignes de fuite.

Elle a le statut d’une publication fondamentale de sécurité conformément au Guide 104 de l’IEC.

Le texte de cette Norme internationale est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>109/183/FDIS</td>
<td>109/186/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de la présente Norme internationale.

La version française de cette norme n’a pas été soumise au vote.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 60664, publiées sous le titre général Coordination de l’isolement des matériels dans les réseaux d’énergie électrique à basse tension, peut être consultée sur le site web de l’IEC.

Les futures normes de cette série porteront dorénavant le nouveau titre général cité ci-dessus. Le titre des normes existant déjà dans cette série sera mis à jour lors de la prochaine édition.

Dans le présent document, les caractères d’imprimerie suivants sont employés:

- **termes qui sont définis à l’Article 3: en gras.**

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l’IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

Le contenu du corrigendum d'octobre 2020 a été pris en considération dans cet exemplaire.
1 Domaine d'application

La présente partie de l'IEC 60664 traite de la coordination de l'isolement des matériels ayant une tension assignée allant jusqu'à 1 000 V en courant alternatif ou jusqu'à 1 500 V en courant continu connectés aux réseaux d'énergie électrique à basse tension.

Le présent document s'applique aux fréquences jusqu'à 30 kHz inclus.

NOTE 1 Les exigences de coordination de l'isolement des matériels dans les réseaux d'énergie électrique à basse tension dont les fréquences assignées sont supérieures à 30 kHz sont données dans l'IEC 60664-4.

NOTE 2 Des tensions plus élevées peuvent exister dans les circuits internes des matériels.

Il s'applique au matériel utilisé jusqu'à 2 000 m au-dessus du niveau de la mer, et fournit des recommandations pour l'utilisation à des altitudes plus élevées (Voir 5.2.3.4).

Il définit les exigences permettant aux comités d'études de déterminer les distances d'isolement, les lignes de fuite et les critères pour l'isolation solide. Il comprend les méthodes d'essais diélectriques concernant la coordination de l'isolement.

Les distances d'isolement minimales spécifiées dans le présent document ne s'appliquent pas en présence de gaz ionisés. Les exigences particulières dans de telles conditions peuvent être spécifiées, comme ils l'entendent, par les comités d'études compétents.

Le présent document ne traite pas des distances:
– à travers l'isolation liquide;
– à travers les gaz autres que l'air;
– à travers l'air comprimé.

La présente publication fondamentale de sécurité reposant sur des exigences essentielles de sécurité est avant tout destinée à être utilisée par les comités d'études dans le cadre de l'élaboration de normes conformément aux principes établis dans le Guide IEC 104 et le Guide ISO/IEC 51.

L'une des responsabilités d'un comité d'études consiste, le cas échéant, à utiliser les publications fondamentales de sécurité dans le cadre de l'élaboration de ses publications.

Cependant, en l'absence de valeurs spécifiées pour les distances d'isolement, les lignes de fuite et les exigences pour les isolations solides dans les normes de produits applicables, ou même en l'absence de normes, le présent document s'applique.

2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).
IEC 60068-2-2, Essais d'environnement – Partie 2-2: Essais – Essai B: Chaleur sèche

IEC 60068-2-78, Essais d'environnement – Partie 2-78: Essais – Essai Cab: Chaleur humide, essai continu

IEC 60270, Techniques des essais à haute tension – Mesures des décharges partielles

IEC 61140:2016, Protection contre les chocs électriques – Aspects communs aux installations et aux matériels

IEC 61180:2016, Techniques des essais à haute tension pour matériel à basse tension – Définitions, exigences et modalités relatives aux essais, matériel d'essai