Short-circuit currents in three-phase a.c. systems –

Part 1: Factors for the calculation of short-circuit currents according to IEC 60909-0

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
Short-circuit currents in three-phase a.c. systems –

Part 1: Factors for the calculation of short-circuit currents according to IEC 60909-0

© IEC 2002 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD ... 11

1 General ... 15
 1.1 Scope and object... 15
 1.2 Reference documents .. 15
 1.3 Application of the factors ... 15
 1.3.1 Factor c .. 15
 1.3.2 Factors K_G and K_S or K_{SO} .. 15
 1.3.3 Factors $K_{G,S}$, $K_{T,S}$ or $K_{G,SO}$, $K_{T,SO}$.. 15
 1.3.4 Factor K_T ... 15
 1.3.5 Factor κ .. 17
 1.3.6 Factors μ, λ and q ... 17
 1.3.7 Factors m and n .. 17
 1.3.8 Contribution of asynchronous motors to the initial symmetrical short-circuit current ... 17
 1.4 Symbols, subscripts and superscripts .. 17
 1.4.1 Symbols ... 17
 1.4.2 Subscripts .. 19
 1.4.3 Superscripts ... 19

2 Factors used in IEC 60909-0 ... 19
 2.1 Voltage factor c for the equivalent voltage source at the short-circuit location 19
 2.1.1 General .. 19
 2.1.2 Calculation methods ... 21
 2.1.3 Equivalent voltage source at the short-circuit location and voltage factor c ... 21
 2.1.4 A simple model illustrating the meaning of the voltage factor c 23
 2.2 Impedance-correction factors when calculating the short-circuit impedances of generators, unit transformers and power-station units .. 31
 2.2.1 General .. 31
 2.2.2 Correction factor K_G .. 33
 2.2.3 Correction factors for power station units with on-load tap changer 37
 2.2.4 Correction factors for power station units without on-load tap-changer 59
 2.2.5 Influence of the impedance correction factor for power-station units when calculating short-circuit currents in meshed networks and maximum short-circuit currents at worst-case load flow .. 67
 2.3 Impedance correction factor K_T when calculating the short-circuit impedances of network transformers ... 73
 2.3.1 General .. 73
 2.3.2 Example for a network transformer $S_{T} = 300$ MVA 75
 2.3.3 Statistical examination of 150 network transformers 83
 2.3.4 Impedance correction factors for network transformers in meshed networks 85
2.4 Factor κ for the calculation of the peak short-circuit current ...89
 2.4.1 General..89
 2.4.2 Factor κ in series R-L-circuits ...89
 2.4.3 Factor κ of parallel R-L-Z branches ..95
 2.4.4 Calculation of the peak short-circuit current i_p in meshed networks ..101
 2.4.5 Example for the calculation of κ and i_p in meshed networks ...105

2.5 Factor μ for the calculation of the symmetrical short-circuit breaking current107
 2.5.1 General..107
 2.5.2 Basic concept..109
 2.5.3 Calculation of the symmetrical short-circuit breaking current I_{sh} with the factor μ113

2.6 Factor λ (λ_{max}, λ_{min}) for the calculation of the steady-state short-circuit current119
 2.6.1 General..119
 2.6.2 Influence of iron saturation ..121

2.7 Factor γ for the calculation of the short-circuit breaking current of asynchronous motors127
 2.7.1 General..127
 2.7.2 Derivation of factor γ ...129
 2.7.3 Short-circuit breaking currents in the case of unbalanced short circuits ...135

2.8 Factors m and n for the calculation of the Joule integral or the thermal equivalent short-circuit current ...137
 2.8.1 General..137
 2.8.2 Time-dependent three-phase short-circuit current ..139
 2.8.3 Factor m ...139
 2.8.4 Factor n ...141
 2.8.5 Factor n in IEC 60909-0, figure 22 ..143

2.9 Statement of the contribution of asynchronous motors or groups of asynchronous motors (equivalent motors) to the initial symmetrical short-circuit current ...147
 2.9.1 General..147
 2.9.2 Short circuit at the terminals of asynchronous motors ..147
 2.9.3 Partial short-circuit currents of asynchronous motors fed through transformers149
 2.9.4 Sum of partial short-circuit currents of several groups of asynchronous motors fed through several transformers ...153

Bibliography ..159
Figure 9 – Power station unit with on-load tap changer and auxiliary transformer F_1, F_2, F_3: short-circuit locations ($I_{kmf1}^r = I_{kmf2}^r$)……….49

Figure 10 – Cumulative frequency H of the deviations $\Delta_{G(S)}$ according to equation (39) for partial short-circuit currents of generators in 47 power station units with on-load tap changer [23]. Short circuit location F_1 in figure 9……….53

Figure 11 – Cumulative frequency H of the deviations $\Delta_{T(S)}$ according to equation (42) for the partial short-circuit currents of unit transformers in 47 power station units with on-load tap-changer [23]. Short-circuit location F_1 in figure 9……….55

Figure 12 – Cumulative frequency H of the deviations $\Delta_{T(S)}$ according to equation (42), see figure 11, for the calculation of $I_{kt(S)}^r$ if only overexcited operation is anticipated [23] …57

Figure 13 – Cumulative frequency H of the deviations $\Delta_{F1(S)}$ according to equation (46) for the partial short-circuit current I_{F1}^r (figure 9) in the case of over- or under-excited operation before the short circuit……….59

Figure 14 – Cumulative frequency H of the deviations calculated with equation (50) [22] and [23]……….61

Figure 15 – Cumulative frequency H of the deviations calculated with equation (39) for 27 generators of power station units without on-load tap changer……….63

Figure 16 – Cumulative frequency H of the deviations calculated with equation (42) for 27 unit transformers of power station units without on-load tap changer……….65

Figure 17 – Cumulative frequency H of the deviations calculated with equation (46) for the partial short-circuit current I_{F2}^r (figure 9) of power station units without on-load tap changer……….67

Figure 18 – Cumulative frequency H of the deviations Δ [13]………71

Figure 19 – Calculation of $I_{kt(S)}^r = I^b + I_{ktU}^b$ with the superposition method [19] and [25] …75

Figure 20 – Short-circuit currents $I_{kt(S)}^r$ depending on t, U^b and S_{kQ} for the network transformer $S_{kt} = 300$ MVA (data see text)……77

Figure 21 – Deviations Δ_{NT} calculated with equation (64) for the transformer $S_{kt} = 300$ MVA……81

Figure 22 – Cumulative frequency H of the deviations Δ_{NT} calculated with equation (64) 1: $\kappa_T = 1,0$; 2: κ_T according to equation (63) with $I^b_I / I_{ktT} = 1$……85

Figure 23 – Calculation of the factor κ in the case of a single-fed three-phase short circuit (series R-L-circuit)……91

Figure 24 – Factor κ and $t_p (f = 50$ Hz) as a function of R/L or X/L ………………………………………95

Figure 25 – Equivalent circuit diagram for the calculation of κ in case of two parallel branches (positive-sequence system)……97

Figure 26 – Factor κ for the calculation of $i_p = \kappa \sqrt{2} I^r_k$ for the case of two parallel branches as shown in figure 25, with $Z_I = Z_{II}, 0,005 \leq R/I X_I \leq 1,0$ and 0,005 $\leq R_{II}/X_{II} \leq 10,0$……..99

Figure 27 – Deviations $\Delta_{kA}, \Delta (1,15 \times \kappa_{lb})$ and $\Delta \kappa_X$ from the exact value κ with 0,005 $\leq Z_I / Z_{II} \leq 1,0$ for the configuration of figure 25………101

Figure 28 – Example for the calculation of κ and i_p with the methods a), b) and c) (IEC 60909-0, 4.3.1.2)………105

Figure 29 – Network configuration (single fed short circuit) and relevant data to demonstrate the decay of the symmetrical a.c. component of a near-to-generator short circuit……111
Figure 30 – Decay of the symmetrical short-circuit current (factor μ) based on test measurements and calculations [5] ... 117

Figure 31 – Characteristic saturation curve method to find the Potier reactance X_p in accordance with [4] ... 123

Figure 32 – Equivalent circuit with the source voltage $E_0(I_f)$ and the Potier reactance X_p 123

Figure 33 – Factor q from measured and calculated values of $I_{bM} = \mu q I_{bM}^\prime$, equation (91), at different values t_{min} in comparison to $q = q_{IEC}$ (IEC 60909-0, figure 17) 129

Figure 34 – Time functions μ, q, μq and $e^{-t/T_{AC}}$ for the calculation of the symmetrical short-circuit breaking current $I_bM = \mu q I_bM^\prime$ in the case of a short circuit at the terminals of an asynchronous motor ... 131

Figure 35 – Effective time constants T_{AC} for the determination of the symmetrical short-circuit breaking current I_bM and in comparison $T_{\mu q} = -t_{min}/\ln(\mu q)_{IEC}$ 135

Figure 36 – Time function I_{bM}/I_{bM}^\prime in the case of a balanced short circuit (I_{b3M}/I_{b3M}^\prime) and a line-to-line short circuit (I_{b2M}/I_{b2M}^\prime) at the terminals of an asynchronous motor 137

Figure 37 – Contribution of one asynchronous motor or a group of asynchronous motors to the initial symmetrical short-circuit current $I_k^{\prime} = I_k^{\prime k} + I_k^{\prime kM}$... 147

Figure 38 – Example for the estimation of the partial short-circuit current $I_k^{\prime kM}$ supplied by a single asynchronous motor or an equivalent motor ... 149

Figure 39 – Partial short-circuit currents from several groups of asynchronous motors fed through several transformers (see text for restrictive conditions) ... 153

Figure 40 – Investigation of the left and right side of equation (118) to determine the deviation Δ according to equation (120): $u_{kr} = 0.06 \Rightarrow 6\%$, $I_{LR}/I_{fM} = 5$ for both the transformers and motor groups ... 157

Table 1 – Voltages and currents before the short circuit at the low-voltage side of the network transformers ... 83

Table 2 – Results of calculations in meshed high-voltage networks with impedance correction factors for power station units and with K_T according to equation (65) for the deviations Δ from equation (66) [19] ... 87

Table 3 – Values of κ for the example in figure 28 ... 107

Table 4 – Data of low-voltage and medium-voltage asynchronous motors (50 Hz) and calculated values .. 133

Table 5 – Data for the model generator [15] ... 143
FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

Technical reports do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful by the maintenance team.

IEC 60909-1, which is a technical report, has been prepared by IEC technical committee 73: Short-circuit currents.

This technical report shall be read in conjunction with IEC 60909-0.

The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>73/120/DTR</td>
<td>73/125/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.
This document, which is purely informative, is not to be regarded as an International Standard.

The committee has decided that the contents of this publication will remain unchanged until 2010. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
1 General

1.1 Scope and object

This part of IEC 60909 is a technical report applicable to short-circuit currents in three-phase a.c. systems. This technical report aims at showing the origin and the application, as far as necessary, of the factors used to meet the demands of technical precision and simplicity when calculating short-circuit currents according to IEC 60909-0.

Thus this technical report is an addition to IEC 60909-0. It does not, however, change the basis for the standardized calculation procedure given in IEC 60909-0.

NOTE References are given in some cases to offer additional help, not to change the procedure laid down in the standard.