

IEC 61000-4-20

Edition 3.0 2022-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

BASIC EMC PUBLICATION PUBLICATION FONDAMENTALE EN CEM

Electromagnetic compatibility (EMC) – Part 4-20: Testing and measurement techniques – Emission and immunity testing in transverse electromagnetic (TEM) waveguides

Compatibilité électromagnétique (CEM) – Partie 4-20: Techniques d'essai et de mesure – Essais d'émission et d'immunité dans les guides d'onde TEM

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100.10; 33.100.20

ISBN 978-2-8322-4758-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale
 – 2 –

IEC 61000-4-20:2022 © IEC 2022

CONTENTS

FC	REWO	RD	7		
IN	INTRODUCTION				
1	Scop	e	.10		
2	Norm	native references	.11		
3	Term	is, definitions and abbreviated terms	.11		
	3.1	Terms and definitions	.11		
	3.2	Abbreviated terms	. 14		
4	Gene	eral	. 15		
5	TEM	waveguide requirements	. 15		
	5.1	General	. 15		
	5.2	General requirements for the use of TEM waveguides	.16		
	5.2.1	Test volume and maximum EUT size	.16		
	5.2.2	Validation of usable test volume	.16		
	5.3	Special requirements and recommendations for certain types of TEM waveguides	.23		
	5.3.1	Set-up of open TEM waveguides	.23		
	5.3.2	Alternative TEM mode verification for a two-port TEM waveguide	.23		
	5.3.3	TEM mode generation for a four-port TEM waveguide	.23		
	5.4	Figures for Clause 5	.24		
6	Over	view of EUT types	.26		
	6.1	General	.26		
	6.2	Small EUT	.26		
	6.3	Large EUT	.26		
7	Labo	ratory test conditions	.26		
	7.1	General	.26		
	7.2		.26		
~	7.3	Electromagnetic conditions			
8	Evalu	Jation and reporting of test results	27		
An	inex A ((normative) Emission measurements in TEM waveguides	.28		
	A.1	Overview	. 28		
	A.2		.28		
	A.3	Correlating TEM waveguide voltages to electric field strength data	28		
	A.3.1	Correlation algorithms	.20		
	Δ Δ	Emission measurement correction factors			
	Α41	Reference emission sources			
	A.4.2	Arrangement of small EUTs			
	A.4.3	Calculation of the small EUT correction factor	.34		
	A.5	Emission measurement procedures in TEM waveguides	.37		
	A.5.1	EUT types	. 37		
	A.5.2	2 EUT arrangement	. 37		
	A.6	Test report	. 38		
	A.7	Figures for Annex A	. 39		
An	Annex B (normative) Immunity testing in TEM waveguides44				
	B.1	Overview	.44		
	B.2	Test equipment	.44		

B.2.1	General	44
B.2.2	Description of the test facility	44
B.3	Field uniformity area calibration	45
B.4	Test levels	45
B.5	Test set-up	45
B.5.1	Arrangement of table-top equipment	45
B.5.2	Arrangement of floor-standing equipment	46
B.5.3	Arrangement of wiring	46
B.6	Test procedures	46
B.7	Test results and test report	46
B.8	Figures for Annex B	47
Annex C (normative) HEMP transient testing in TEM waveguides	49
C.1	Overview	49
C.2	Immunity tests	49
C.2.1	General	49
C.2.2	Radiated test facilities	50
C.2.3	Frequency domain spectrum requirements	51
C.3	Test equipment	51
C.4	Test set-up	52
C.5	Test procedure	52
C.5.1	General	52
C.5.2	Severity level and test exposures	53
C.5.3	Test procedure	53
C.5.4	Test execution	54
C.5.5	Execution of the radiated immunity test	54
C.6	Figure for Annex C	55
Annex D (informative) TEM waveguide characterization	56
D.1	Overview	
D.2	Distinction between wave impedance and characteristic impedance	
D.3	TEM wave	
D.3.1	General	
D.3.2	Free-space TEM mode	
D.3.3	Wavequides	
D.4	Wave propagation	
D.4.1	General	
D.4.2	Spherical propagation	
D.4.3	Plane wave propagation in free space	
D.4.4	Velocity of propagation	58
D.5	Polarization	58
D.6	Types of TEM waveguides	59
D.6.1	General	59
D.6.2	Open TEM waveguides (striplines, etc.)	60
D.6.3	Closed TEM waveguides (TEM cells)	60
D.7	Frequency limitations	60
D.8	Figures for Annex D	61
Annex E (informative) Calibration method for E-field probes in TEM wavequides	69
F 1	Overview	69
F 2	Probe calibration requirements	60 60
E 2 1	General	

- 4 -

– • •		~~
E.2.2	Calibration frequency range	69
E.2.3	Calibration volume	70
E.2.4	Probe dimensions	70
E.2.5	Perturbations of TEM waveguide fields due to the probe	70
E.2.6	Frequency steps	71
E.2.7	Field strength	71
E.3	Requirements for calibration instrumentation	71
E.3.1	Specifications of TEM waveguide	71
E.3.2	Harmonics and spurious signals	72
E.3.3	Probe fixture	72
E.3.4	Measuring net power to a transmitting device using directional couplers	72
E.4	E-field probe calibration	73
E.4.1	Calibration methods	73
E.4.2	Calibration procedure using a two-port TEM waveguide	73
E.4.3	Calibration procedure using one-port TEM waveguide	74
E.5	Figures for Annex E	77
Annex F (informative) Instrumentation uncertainty of emission measurement results	79
F.1	Radiated disturbance measurements using a TEM waveguide	79
F.1.1	Measurand for radiated disturbance measurements using a TEM	
	waveguide	79
F.1.2	Symbols of input quantities common to all disturbance measurements	79
F.1.3	Symbols of input quantities specific to TEM waveguide measurements	79
F.2	Input guantities to be considered for radiated disturbance measurements	
	using a TEM waveguide	79
F.3	Uncertainty budget and rationale for the input quantities for radiated	
	disturbance measurements using a TEM waveguide	80
F.3.1	Uncertainty budget for radiated disturbance measurements using a TEM waveguide	80
F.3.2	Rationale for the estimates of input quantities for radiated disturbance	
	measurements using a TEM waveguide	81
F.4	Figures for Annex F	87
Annex G (informative) Measurement uncertainty of immunity testing due to test	
instrumen	tation	89
G.1	General symbols	89
G.2	Symbol and definition of the measurand	89
G.3	Symbols for input quantities	89
G.4	Example: Uncertainty budget for immunity test	89
G.5	Rationale for the estimates of input quantities	90
Annex H (informative) Correlation of emission and immunity limits between EMC test	
facilities	·····	93
H.1	Overview	93
H.2	Dipole in free space (representing FAR set-up)	93
H.3	Dipole in half space (representing OATS or SAC set-up)	95
H.4	Dipole in a TEM-mode transmission line	96
H.5	Dipole in a reverberation chamber	97
H.6	Correlation	98
H.7	Example of emission limits	
Н 8	Figures for Annex H	100
Annex I (ii	nformative) TEM waveguide transient characterization	103
		100
1.1	Overview	103

1.2	Test equipment	
1.3	Test set-up	
1.4	TEM waveguide characterization by correlation	
1.5	Quantification of the Pcc	
I.6	Performable transient test signals	
1.7	Figures for Annex I	
Bibliogr	aphy	
•		

Figure 1 – Flowchart of TEM mode and field uniformity verification procedure with the "constant forward power" method (see 5.2.2.4.1)	24
Figure 2 – Flowchart of TEM mode and field uniformity verification procedure with the "constant field strength" method (see 5.2.2.4.2)	25
Figure A.1 – Routing the exit cable to the corner at the ortho-angle and the lower edge of the test volume in a TEM waveguide (see A.5.2)	39
Figure A.2 – Basic ortho-axis EUT positioner or manipulator (see 3.1.13, A.4.2, A.5.1.2, A.5.2)	40
Figure A.3 – Die pattern and axis alignment for an EUT [26] (see A.3.2.3.2)	41
Figure A.4 – Non-redundant twelve-face and axis orientations for a typical EUT [26] (see A.3.2.3.2)	42
Figure A.5 – Open-area test site (OATS) emission measurements geometry (see A.3.2.4)	43
Figure B.1 – Example of test set-up for single-polarization TEM waveguide (see Clause B.5)	47
Figure B.2 – Uniform area calibration points in a TEM waveguide (see Clause B.3)	48
Figure C.1 – Pulse waveform frequency domain spectral magnitude between 100 kHz and 300 MHz (see C.2.1)	55
Figure D.1 – Simple waveguide (no TEM mode) (see D.3.3)	61
Figure D.2 – Example of waveguides supporting TEM-mode propagation (see D.3.3)	61
Figure D.3 – E-field polarization vector (see Clause D.5)	61
Figure D.4 – Simple transmission line model for TEM mode propagation (see D.6.1)	62
Figure D.5 – One- and two-port TEM waveguide concepts (see D.6.1)	62
Figure D.6 – Operation of four-port TEM waveguides (see D.6.1)	62
Figure D.7 – Two-port TEM cell (symmetric septum) (see D.6.1 and D.6.3)	63
Figure D.8 – One-port TEM cell (asymmetric septum) (see D.6.1 and D.6.3)	64
Figure D.9 – Stripline (two plates) (see D.6.1 and D.6.2)	66
Figure D.10 – Stripline (four plates, balanced feed) (see D.6.1)	67
Figure D.11 – Four-port TEM waveguide (symmetric parallel septa) (see D.6.1 and D.6.3)	68
Figure E.1 – Example of test points for calibration volume validation (see E.2.3)	77
Figure E.2 – Set-up for validation of probe perturbation (see E.2.5)	77
Figure E.3 – Set-up for measuring net power to a transmitting device (not to scale) (see E.3.4)	77
Figure E.4 – Example set-up for E-field probe calibration with two-port TEM waveguide (see E.4.2)	78
Figure E.5 – Example set-up for E-field probe calibration with one-port TEM waveguide and alternative method (see E.4.3.2)	78
Figure E.6 – Equivalent circuit of monopole antenna and measuring apparatus (see E.4.3.3)	78

Figure F.1 – Deviation of the QP detector level indication from the signal level at receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse repetition frequency of 100 Hz	87
Figure F.2 – Deviation of the peak detector level indication from the signal level at receiver input for two cases, a sine-wave signal and an impulsive signal with a pulse repetition frequency of 100 Hz	88
Figure H.1 – Representation of a short centre-fed dipole and a more general source representing an EUT (see Clause H.2)	100
Figure H.2 – Vertical source and receiving dipoles located over a perfectly-conducting ground plane of infinite extent (see Clause H.3)	100
Figure H.3 – Two types of TEM cells with a vertically polarized dipole source and the source to receive port geometry defined (see Clause H.4)	101
Figure H.4 – Reverberation chamber with a source dipole, a stirrer to randomize the fields, and a general receive antenna (see Clause H.5)	101
Figure H.5 – TEM waveguide Class A and Class B emission limits correlated from CISPR 32 [68] (see Clause H.7)	102
Figure I.1 – Test set-up	106
Figure I.2 – Signal windowing	107
Figure I.3 – Example of a heatmap – Pcc for a test point in the uniform area	107
Table 1 – Values k for expanded uncertainty with normal distribution	18
Table B.1 – Uniform area calibration points	45
Table B.2 – Test levels	45
Table C.1 – Radiated immunity test levels defined for this document	50
Table E.1 – Calibration frequencies	71
Table E.2 – Calibration field strength level	71
Table F.1 – Uncertainty budget for radiated disturbance measurement results using aTEM waveguide from 30 MHz to 1 000 MHz (example)	80
Table F.2 – Uncertainty budget for radiated disturbance measurement results using a TEM waveguide from 1 GHz to 6 GHz (example)	81
Table F.3 – Values of S _{lim} for 30 MHz to 1 000 MHz	83
Table F.4 – Values of S _{lim} for 1 GHz to 6 GHz	84
Table G.1 – Example uncertainty budget of the immunity test level	90
Table H.1 – Summary of the emission correlation parameters	99

-7-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-20: Testing and measurement techniques – Emission and immunity testing in transverse electromagnetic (TEM) waveguides

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject deall with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-20 has been prepared by subcommittee 77B: High frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility, in cooperation with CISPR (International Special Committee on Radio Interference) subcommittee A: Radio-interference measurements and statistical methods.

It forms Part 4-20 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107.

This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) provide information on the testing of large EUTs (including cables);

- 8 -

IEC 61000-4-20:2022 © IEC 2022

- b) apply the work on measurement uncertainties by adapting the work completed in CISPR and TC 77 (for emissions and immunity);
- c) update the validation procedure for the test volume regarding field uniformity and TEM mode verification;
- d) provide information concerning two-port and four-port TEM waveguides;
- e) add a new informative annex (Annex I) dealing with transient TEM waveguide characterization; and
- f) add information dealing with dielectric test stands for EUTs.

The text of this International Standard is based on the following documents:

Draft	Report on voting
77B/853/FDIS	77B/855/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts of the IEC 61000 series, published under the general title *Electromagnetic compatibility (EMC)*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

- 9 -

INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles) Definitions, terminology

Part 2: Environment

Description of the environment

Classification of the environment

Compatibility levels

Part 3: Limits

Emission limits

Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques

Measurement techniques

Testing techniques

Part 5: Installation and mitigation guidelines

Installation guidelines

Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as International Standards, Technical Specifications or Technical Reports, some of which have already been published as sections. Others are and will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

This part is an International Standard which gives emission, immunity and HEMP and IEMI transient testing requirements.

– 10 –

IEC 61000-4-20:2022 © IEC 2022

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-20: Testing and measurement techniques – Emission and immunity testing in transverse electromagnetic (TEM) waveguides

1 Scope

This part of IEC 61000 focuses on emission and immunity test methods for electrical and electronic equipment using various types of transverse electromagnetic (TEM) waveguides. These types include open structures (for example striplines and electromagnetic pulse simulators) and closed structures (for example TEM cells). These structures can be further classified as one-port, two-port, or multi-port TEM waveguides. The frequency range depends on the specific testing requirements and the specific TEM waveguide type.

The object of this document is to describe

- TEM waveguide characteristics, including typical frequency ranges and equipment-undertest (EUT) size limitations;
- TEM waveguide validation methods for electromagnetic compatibility (EMC) tests;
- the EUT (i.e. EUT cabinet and cabling) definition;
- test set-ups, procedures, and requirements for radiated emission measurements in TEM waveguides; and
- test set-ups, procedures, and requirements for radiated immunity testing in TEM waveguides.

NOTE Test methods are defined in this document to measure the effects of electromagnetic radiation on equipment and the electromagnetic emissions from the equipment concerned. The simulation and measurement of electromagnetic radiation is not adequately exact for the quantitative determination of effects for all end-use installations. The test methods defined are structured for a primary objective of establishing adequate reproducibility of results at various test facilities for qualitative analysis of effects.

This document does not intend to specify the tests to be applied to any particular apparatus or system(s). The main intention of this document is to provide a general basic reference for all interested product committees of the IEC. For radiated emission measurements, product committees select emission limits and measurement methods in consultation with CISPR standards. For radiated immunity testing, product committees remain responsible for the appropriate choice of immunity tests and immunity test limits to be applied to equipment within their scope. This document describes test methods that are separate from those of IEC 61000-4-3 [34].¹

¹ Numbers in square brackets refer to the Bibliography.

These other distinct test methods may be used when so specified by product committees, in consultation with CISPR and TC 77.

IEC 61000-4-20:2022 © IEC 2022 - 11 -

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Part 161: Electromagnetic compatibility

CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-1-4, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

– 114 –

IEC 61000-4-20:2022 © IEC 2022

SOMMAIRE

A١	/ANT-P	ROPOS	119
IN	TRODU	JCTION	121
1	Dom	aine d'application	122
2	Réfé	rences normatives	122
3	Term	es, définitions et termes abrégés	123
	3.1	Termes et définitions	123
	3.2	Termes abrégés	126
4	Géné	éralités	127
5	Exige	ences concernant les guides d'onde TEM	128
	5.1	Généralités	128
	5.2	Exigences générales pour l'utilisation des guides d'onde TEM	128
	5.2.1	Volume d'essai et taille maximale de l'EUT	128
	5.2.2	Validation du volume d'essai utilisable	129
	5.3	Exigences et recommandations spéciales pour certains types de guides d'onde TEM	135
	5.3.1	Montage de guides d'onde TEM ouverts	135
	5.3.2	Autre vérification du mode TEM pour un guide d'onde TEM à deux accès	136
	5.3.3	Génération du mode TEM pour un guide d'onde TEM à quatre accès	136
	5.4	Figures de l'Article 5	137
6	Vue	d'ensemble des types d'EUT	139
	6.1	Généralités	139
	6.2	EUT de petite taille	139
	6.3	EUT de grande taille	139
7	Cond	litions d'essai en laboratoire	139
	7.1	Généralités	139
	7.2	Conditions climatiques	139
	7.3	Conditions électromagnétiques	139
8	Évalu	uation et consignation des résultats d'essai	140
Ar	nnex A ((normative) Mesurages des émissions dans les guides d'onde TEM	141
	A.1	Aperçu	141
	A.2	Matériel d'essai	141
	A.3	Corrélation des tensions des guides d'onde TEM avec les données d'amplitude du champ électrique	142
	A.3.1	Généralités	142
	A.3.2	2 Algorithmes de corrélation	142
	A.4	Facteurs de correction des mesures d'émission	147
	A.4.1	Sources d'émission de référence	147
	A.4.2	2 Installation des EUT de petite taille	148
	A.4.3	Calcul du facteur de correction pour les EUT de petite taille	148
	A.5	Procédures de mesure des émissions dans les guides d'onde TEM	150
	A.5.1	Type d'EUT	150
	A.5.2	2 Montage de l'EUT	151
	A.6	Rapport d'essai	152
	A.7	Figures de l'Annex A	153
Ar	nex B (normative) Essais d'immunité dans les guides d'onde TEM	158

B.1	Aperçu	158
B.2	Matériel d'essai	158
B.2.1	Généralités	158
B.2.2	Description de l'installation d'essai	158
B.3	Étalonnage de la zone d'uniformité du champ	159
B.4	Niveaux d'essai	159
B.5	Montage d'essai	159
B.5.1	Installation des équipements de table	159
B.5.2	Installation des équipements posés au sol	160
B.5.3	Installation du câblage	160
B.6	Procédures d'essai	160
B.7	Résultats et rapport d'essai	161
B.8	Figures de l'Annex B	161
Annex C (normative) Essais de transitoires IEM-HA dans les guides d'onde TEM	163
C 1	Apercu	163
C.2	Essais d'immunité	163
C 2 1	Généralités	163
C 2 2	Installations d'assai pour les perturbations rayonnées	164
C 2 3	Exigences du spectre dans le domaine fréquentiel	165
C 3	Matériel d'essai	165
C.3	Materiel d'essai	105
0.4	Propédure d'essai	166
0.5		100
0.5.1	Generalites	100
0.5.2	Niveau de sevenite et expositions d'essai	107
0.5.3	Frocedure d'essar	107
0.5.4	Execution de l'essai	108
0.5.5	Execution de l'essai d'immunité aux perturbations rayonnées	169
	Figure de l'Annex C	169
Annex D (Informative) Caracterisation des guides d'onde TEM	170
D.1	Aperçu	170
D.2	Distinction entre impédance d'onde et impédance caractéristique	170
D.3	Onde TEM	171
D.3.1	Généralités	171
D.3.2	Mode TEM en espace libre	171
D.3.3	Guides d'onde	171
D.4	Propagation d'onde	172
D.4.1	Généralités	172
D.4.2	Propagation sphérique	172
D.4.3	Propagation d'onde plane en espace libre	172
D.4.4	Vitesse de propagation	172
D.5	Polarisation	172
D.6	Types de guides d'onde TEM	173
D.6.1	Généralités	173
D.6.2	Guides d'onde TEM ouverts (lignes ouvertes, etc.)	174
D.6.3	Guides d'onde TEM fermés (cellules TEM)	174
D.7	Limitations de fréquence	174
D.8	Figures de l'Annex D	175
Annex E (informative) Méthode d'étalonnage pour les sondes de champ électrique	
dans	les guides d'onde TEM	183

_	1	1	6	—
---	---	---	---	---

E.1	Aperçu	183
E.2	Exigences pour l'étalonnage des sondes	183
E.2.1	Généralités	183
E.2.2	Plage de fréquences d'étalonnage	183
E.2.3	Volume d'étalonnage	184
E.2.4	Dimensions des sondes	184
E.2.5	Perturbations des champs du guide d'onde TEM dues à la sonde	184
E.2.6	Paliers de fréquence	185
E.2.7	Amplitude de champ	185
E.3	Exigences pour les instruments d'étalonnage	186
E.3.1	Spécifications du guide d'onde TEM	186
E.3.2	Harmoniques et signaux parasites	186
E.3.3	Fixation de la sonde	187
E.3.4	Mesure de la puissance nette fournie à un dispositif d'émission au moyen de coupleurs directionnels	187
E.4	Étalonnage de la sonde de champ électrique	188
E.4.1	Méthodes d'étalonnage	188
E.4.2	Procédure d'étalonnage à l'aide d'un guide d'onde TEM à deux accès	188
E.4.3	Procédure d'étalonnage à l'aide d'un guide d'onde TEM à un accès	189
E.5	Figures de l'Annex E	
Annex F (informative) Incertitude d'instrumentation des résultats de mesure des	
émis	sions	194
F.1	Mesurages des perturbations ravonnées à l'aide d'un guide d'onde TEM	194
F.1.1	Mesurande pour les mesurages des perturbations ravonnées à l'aide	
	d'un guide d'onde TEM	194
F.1.2	Symboles des grandeurs d'entrée communes à tous les mesurages de perturbations	194
F.1.3	Symboles des grandeurs d'entrée spécifiques aux mesurages de guide d'onde TEM	194
F.2	Grandeurs d'entrée à prendre en considération pour les mesurages des perturbations rayonnées à l'aide d'un guide d'onde TEM	194
F.3	Budget d'incertitude et justification des grandeurs d'entrée pour les mesurages des perturbations rayonnées à l'aide d'un guide d'onde TEM	195
F.3.1	Budget d'incertitude pour les mesurages des perturbations rayonnées à l'aide d'un guide d'onde TEM	195
F.3.2	Justification des estimations des grandeurs d'entrée pour les mesurages des perturbations rayonnées à l'aide d'un guide d'onde TEM	196
F.4	Figures de l'Annex F	203
Annex G (instru	(informative) Incertitude de mesure de l'essai d'immunité en raison des uments d'essai	204
G.1	Symboles généraux	204
G.2	Symbole et définition du mesurande	204
G.3	Symboles pour les grandeurs d'entrée	204
G 4	Exemple: Budget d'incertitude pour l'essai d'immunité	204
G 5	Justification des estimations des grandeurs d'entrée	205
Annex H (insta	(informative) Corrélation des limites d'émission et d'immunité entre les llations d'essai CEM	208
H 1	Apercu	208
H 2	Dinôle en espace libre (représentant le montage en FAR)	200
н 2	Dipôle en demi-espace (représentant un montage en OATS ou SAC)	002 210
н.э	Dipôle dans une ligne de transmission en mode TEM	01 2
11.4		∠ ! !

IEC 61000-4-20:2022 © IEC 2022 - 117 -

H.5	Dipôle dans une chambre réverbérante	212
H.6	Corrélation	213
H.7	Exemple de limites d'émission	214
H.8	Figures de l'Annex H	215
Annex I (informative) Caractérisation des transitoires du guide d'onde TEM	219
I.1	Aperçu	219
1.2	Matériel d'essai	219
1.3	Montage d'essai	219
1.4	Caractérisation du guide d'onde TEM par corrélation	220
I.5	Quantification du Pcc	221
I.6	Signaux d'essai transitoires réalisables	221
1.7	Figures de l'Annex I	
Bibliogra	phie	

Figure 1 – Organigramme du mode TEM et de la procédure de vérification de l'uniformité du champ avec la méthode de "puissance incidente constante" (voir 5.2.2.4.1)	37
Figure 2 – Organigramme du mode TEM et de la procédure de vérification de l'uniformité du champ avec la méthode d'amplitude de champ constante (voir 5.2.2.4.2)13	38
Figure A.1 – Acheminement du câble de sortie vers le coin à l'orthoangle et le bord inférieur du volume d'essai dans un guide d'onde TEM (voir A.5.2)15	53
Figure A.2 – Positionneur EUT d'orthoaxe ou manipulateur de base (voir 3.1.13, A.4.2, A.5.1.2, A.5.2)	54
Figure A.3 – Modèle de puce et alignement de l'axe d'un EUT [26] (voir A.3.2.3.2)18	55
Figure A.4 – Orientations non redondantes à douze faces/axes pour un EUT typique [26] (voir A.3.2.3.2)	56
Figure A.5 – Géométrie de mesures des émissions dans l'emplacement d'essai ouvert (OATS) (voir A.3.2.4)	57
Figure B.1 – Exemple de montage d'essai pour guide d'onde TEM à polarisation unique (voir Article 0)	61
Figure B.2 – Points d'étalonnage de la zone uniforme dans un guide d'onde TEM (voir Article B.3)	62
Figure C.1 – Amplitude spectrale dans le domaine de fréquences de la forme d'onde d'impulsions, comprise entre 100 kHz et 300 MHz (voir C.2.1)	69
Figure D.1 – Guide d'onde simple (pas de mode TEM) (voir D.3.3)17	75
Figure D.2 – Exemple de guides d'onde prenant en charge la propagation en mode TEM (voir D.3.3)	75
Figure D.3 – Vecteur de polarisation de champ électrique (voir Article D.5)	76
Figure D.4 – Modèle de ligne de transmission simple pour propagation de mode TEM (voir D.6.1)	76
Figure D.5 – Concepts de guides d'onde TEM à un et deux accès (voir D.6.1)17	76
Figure D.6 – Fonctionnement des guides d'onde TEM à quatre accès (voir D.6.1)12	76
Figure D.7 – Cellule TEM à deux accès (septum symétrique) (voir D.6.1 et D.6.3)	77
Figure D.8 – Cellule TEM à un accès (septum asymétrique) (voir D.6.1 et D.6.3)12	78
Figure D.9 – Ligne ouverte (deux plaques) (voir D.6.1 et D.6.2)	80
Figure D.10 – Ligne ouverte (quatre plaques, alimentation équilibrée) (voir D.6.1)18	81
Figure D.11 – Guide d'onde TEM à quatre accès (septums parallèles symétriques) (voir D.6.1 et D.6.3)	82

_	1	1	8	_
---	---	---	---	---

Figure E.1 – Exemple de points d'essai pour la validation du volume d'étalonnage (voir E.2.3)	192
Figure E.2 – Montage pour la validation des perturbations de la sonde (voir E.2.5)	192
Figure E.3 – Montage pour la mesure de la puissance nette vers un dispositif d'émission (pas à l'échelle) (voir E.3.4)	192
Figure E.4 – Exemple de montage d'étalonnage d'une sonde de champ électrique avec un guide d'onde TEM à deux accès (voir E.4.2)	193
Figure E.5 – Exemple de montage d'étalonnage d'une sonde de champ électrique avec un guide d'onde TEM à un accès et par une autre méthode (voir E.4.3.2)	193
Figure E.6 – Circuit équivalent de l'antenne unipolaire et appareil de mesure (voir E.4.3.3)	193
Figure F.1 – Écart d'indication du niveau de détecteur de quasi-crête par rapport au niveau du signal à l'entrée du récepteur pour deux cas: un signal sinusoïdal et un signal impulsif avec une fréquence de répétition d'impulsion de 100 Hz	203
Figure F.2 – Écart d'indication du niveau de détecteur de crête par rapport au niveau du signal à l'entrée du récepteur pour deux cas: un signal sinusoïdal et un signal impulsif avec une fréquence de répétition d'impulsion de 100 Hz)2	203
Figure H.1 – Représentation d'un dipôle court à alimentation centrale et d'une source plus générale représentant un EUT (voir Article H.2)2	215
Figure H.2 – Source verticale et dipôles de réception situés sur un plan de sol parfaitement conducteur d'étendue infinie (voir Article H.3)2	216
Figure H.3 – Deux types de cellules TEM avec une source dipolaire à polarisation verticale et dont la géométrie entre l'accès source et l'accès de réception est définie (voir Article H.4)	217
Figure H.4 – Chambre réverbérante avec une source dipolaire, un dispositif de brassage pour rendre aléatoires les champs et une antenne de réception générale (voir Article H.5)	218
Figure H.5 – Limites d'émission de Classe A et de Classe B du guide d'onde TEM corrélées à partir de la CISPR 32 [68], (voir Article H.7)2	218
Figure I.1 – Montage d'essai	222
Figure I.2 – Fenêtrage du signal	223
Figure I.3 – Exemple de carte thermique – Pcc pour un point d'essai dans la zone uniforme	223
Tableau 1 – Valeurs k pour l'incertitude élargie pour des résultats à distribution normale f	131
Tableau B.1 – Points d'étalonnage de la zone uniforme	159
Tableau B.2 – Niveaux d'essai	159
Tableau C.1 – Niveaux d'essai d'immunité aux perturbations rayonnées définis dans le présent document	164
Tableau E.1 – Fréquences d'étalonnage	185
Tableau E.2 – Niveau de l'amplitude du champ d'étalonnage	186
Tableau F.1 – Budget d'incertitude pour les résultats de mesure des perturbations rayonnées à l'aide d'un guide d'onde TEM entre 30 MHz et 1 000 MHz (exemple)	195
Tableau F.2 – Budget d'incertitude pour les résultats de mesure des perturbations rayonnées à l'aide d'un guide d'onde TEM entre 1 GHz et 6 GHz (exemple)	196
Tableau F.3 – Valeurs de <i>S</i> lim entre 30 MHz et 1 000 MHz	198
Tableau F.4 – Valeurs de S _{lim} entre 1 GHz et 6 GHz	199
Tableau G.1 – Exemple de budget d'incertitude du niveau d'essai d'immunité	205
Tableau H.1 – Récapitulatif des paramètres de corrélation d'émission	214

– 119 –

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) -

Partie 4-20: Techniques d'essai et de mesure – Essais d'émission et d'immunité dans les guides d'onde TEM

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. À cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- L'attention est attirée sur le fait que certains des éléments du présent document de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets.

La Norme internationale IEC 61000-4-20 a été établie par le sous-comité 77B: Phénomènes haute fréquence du comité d'études 77 de l'IEC: Compatibilité électromagnétique, en collaboration avec le sous-comité A du CISPR (Comité international spécial des perturbations radioélectriques): Mesures des perturbations radioélectriques et méthodes statistiques.

Elle constitue la partie 4-20 de l'IEC 61000. Elle a le statut d'une publication fondamentale en CEM conformément au Guide IEC 107.

Cette troisième édition annule et remplace la deuxième édition parue en 2010. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

– 120 –

– IEC 61000-4-20:2022 © IEC 2022

- a) fournir des informations relatives aux essais d'EUT volumineux (y compris les câbles);
- b) appliquer les travaux sur les incertitudes de mesure par adaptation des travaux réalisés par le CISPR et le CE 77 (pour les émissions et l'immunité);
- c) mettre à jour la procédure de validation pour le volume d'essai en ce qui concerne la vérification de l'uniformité du champ et du mode TEM;
- d) fournir des informations relatives aux guides d'onde TEM à deux accès et à quatre accès;
- e) ajouter une nouvelle annexe informative (Annex I) qui traite de la caractérisation du guide d'onde TEM transitoire; et
- f) ajouter des informations qui traitent des bancs d'essais diélectriques des EUT.

Le texte de cette Norme internationale est issu des documents suivants:

Projet	Rapport de vote
77B/853/FDIS	77B/855/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à son approbation.

La langue employée pour l'élaboration de cette Norme internationale est l'anglais.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2, il a été développé selon les Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles sous www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par l'IEC sont décrits plus en détail sous www.iec.ch/publications/.

Une liste de toutes les parties de la série IEC 61000, publiées sous le titre général *Compatibilité électromagnétique*, se trouve sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous <u>webstore.iec.ch</u> dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

– 121 –

INTRODUCTION

L'IEC 61000 est publiée sous forme de plusieurs parties selon la structure suivante:

Partie 1: Généralités

Considérations générales (introduction, principes fondamentaux) Définitions, terminologie

Partie 2: Environnement

Description de l'environnement

Classification de l'environnement

Niveaux de compatibilité

Partie 3: Limites

Limites d'émission

Limites d'immunité (dans la mesure où elles ne relèvent pas de la responsabilité des comités de produits)

Partie 4: Techniques d'essai et de mesure

Techniques de mesure

Techniques d'essai

Partie 5: Lignes directrices d'installation et d'atténuation

Lignes directrices d'installation

Méthodes et dispositifs d'atténuation

Partie 6: Normes génériques

Partie 9: Divers

Chaque partie est ensuite subdivisée en plusieurs parties, publiées soit comme normes internationales, soit comme spécifications techniques ou rapports techniques, dont certaines ont déjà été publiées en tant que sections. D'autres sont et seront publiées avec le numéro de la partie suivi d'un tiret et complété d'un second chiffre qui identifie la subdivision (exemple: IEC 61000-6-1).

La présente partie est une Norme internationale qui spécifie les exigences des essais d'émission, d'immunité et de transitoires IEM-HA et IEMI.

– 122 –

IEC 61000-4-20:2022 © IEC 2022

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) –

Partie 4-20: Techniques d'essai et de mesure – Essais d'émission et d'immunité dans les guides d'onde TEM

1 Domaine d'application

La présente partie de l'IEC 61000 concerne les méthodes d'essai d'émission et d'immunité pour les matériels électriques et électroniques qui utilisent différents types de guides d'onde transverses électromagnétiques (TEM). Ces types comprennent des structures ouvertes (par exemple, des lignes ouvertes et des simulateurs d'impulsion électromagnétique), et des structures fermées (par exemple, des cellules TEM), qui peuvent être elles-mêmes classées en guides d'onde TEM à un accès, à deux accès, ou à accès multiples. La plage de fréquences dépend des exigences d'essai spécifiques et du type spécifique de guide d'onde TEM.

L'objet du présent document est de décrire

- les caractéristiques des guides d'onde TEM, y compris les plages de fréquences types et les limites de tailles des équipements en essai (EUT);
- les méthodes de validation des guides d'onde TEM pour les essais de compatibilité électromagnétique CEM;
- la définition de l'EUT (c'est-à-dire l'armoire et le câblage de l'EUT);
- les montages d'essai, les procédures et les exigences relatives aux mesurages d'émissions rayonnées dans les guides d'onde TEM; et
- les montages d'essai, les procédures et les exigences pour les essais d'immunité rayonnée dans les guides d'onde TEM.

NOTE Dans le présent document, les méthodes d'essai sont définies afin de mesurer les effets des rayonnements électromagnétiques sur les matériels et les émissions électromagnétiques des matériels concernés. La simulation et le mesurage des rayonnements électromagnétiques ne sont pas suffisamment exacts pour une détermination quantitative des effets sur toutes les installations d'utilisation finale. Les méthodes d'essai définies sont structurées avec l'objectif premier d'établir une reproductibilité adéquate des résultats dans différentes installations d'essai pour des analyses qualitatives des effets.

Le présent document ne vise pas à spécifier les essais à appliquer à des appareils ou à un ou des systèmes particuliers. Le but principal présent document est de donner une référence de base d'ordre général à tous les comités de produits IEC concernés. Pour les mesurages d'émission rayonnée, les comités de produits sélectionnent des limites d'émission et des méthodes de mesure en consultation avec les normes CISPR. Pour les essais d'immunité rayonnée, les comités de produits restent responsables du choix approprié des essais d'immunité et des limites qui y sont associées, à appliquer aux matériels qui relèvent de leur domaine d'application. Le présent document décrit des méthodes d'essai qui sont indépendantes de celles de l'IEC 61000-4-3 [34].¹

2 Références normatives

Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule

¹ Les chiffres entre crochets renvoient à la Bibliographie.

Ces autres méthodes d'essai distinctes peuvent être utilisées lorsqu'elles sont ainsi spécifiées par les comités de produits, en consultation avec le CISPR et le CE 77.

– 123 –

l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60050-161, Vocabulaire Électrotechnique International – Partie 161: Compatibilité électromagnétique

CISPR 16-1-1, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-1: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Appareils de mesure

CISPR 16-1-4, Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées