Electromagnetic compatibility (EMC) –

Part 4-5:
Testing and measurement techniques –
Surge immunity test

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.

Reference number
IEC 61000-4-5:2005(E)
Electromagnetic compatibility (EMC) –

Part 4-5: Testing and measurement techniques – Surge immunity test

© IEC 2005 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD ... 7

INTRODUCTION ... 11

1 Scope and object..13
2 Normative references ...13
3 Terms and definitions ...15
4 General21
 4.1 Power system switching transients ..21
 4.2 Lightning transients ...21
 4.3 Simulation of the transients ...21
5 Test levels.. ..23
6 Test instrumentation...23
 6.1 1,2/50 µs combination wave generator ...23
 6.2 10/700 µs combination wave generator ...31
 6.3 Coupling/decoupling networks ...37
7 Test setup63
 7.1 Test equipment ...63
 7.2 Test setup for tests applied to EUT power ports ..63
 7.3 Test setup for tests applied to unshielded unsymmetrical interconnection lines ..63
 7.4 Test setup for tests applied to unshielded symmetrical interconnections communication lines ..65
 7.5 Test setup for tests applied to high speed communications lines65
 7.6 Test setup for tests applied to shielded lines ..65
 7.7 Test setup to apply potential differences ..71
 7.8 EUT mode of operation ...71
8 Test procedure ...73
 8.1 Laboratory reference conditions ..73
 8.2 Application of the surge in the laboratory ...73
9 Evaluation of test results ..75
10 Test report.. ..77

Annex A (informative) Selection of generators and test levels79
Annex B (informative) Explanatory notes ...83
Annex C (informative) Considerations for achieving immunity for equipment connected to low voltage power systems ...91

Bibliography...95

Figure 1 – Simplified circuit diagram of the combination wave generator (1,2/50 µs – 8/20 µs) ...25
Figure 2 – Waveform of open-circuit voltage (1,2/50 µs) at the output of the generator with no CDN connected (waveform definition according to IEC 60060-1) ...29
Figure 3 – Waveform of short-circuit current (8/20 µs) at the output of the generator with no CDN connected (waveform definition according to IEC 60060-1)..29
Figure 4 – Simplified circuit diagram of the combination wave generator (10/700 µs – 5/320 µs) according to ITU K series standards...31
Figure 5 – Waveform of open-circuit voltage (10/700 µs) (waveform definition according to IEC 60060-1)...33
Figure 6 – Waveform of the 5/320 µs short-circuit current waveform (definition according to IEC 60060-1)...35
Figure 7 – Example of test setup for capacitive coupling on a.c./d.c. lines; line-to-line coupling (according to 7.2)...37
Figure 8 – Example of test setup for capacitive coupling on a.c./d.c. lines; line-to-ground coupling (according to 7.2)...39
Figure 9 – Example of test setup for capacitive coupling on a.c. lines (3 phases); line L3 to line L1 coupling (according to 7.2)...41
Figure 10 – Example of test setup for capacitive coupling on a.c. lines (3 phases); line L3 to ground coupling (according to 7.2)..43
Figure 11 – Example of test setup for unshielded unsymmetrical interconnection lines; line-to-line and line-to-ground coupling (according to 7.3), coupling via capacitors.................45
Figure 12 – Example of test setup for unshielded unsymmetrical interconnection lines; line-to-line and line-to-ground coupling (according to 7.3), coupling via arrestors.........................47
Figure 13 – Example of test setup for unshielded unsymmetrical interconnection lines; line-to-line and line-to-ground coupling (according to 7.3), coupling via a clamping circuit..49
Figure 14 – Example of test setup for unshielded symmetrical interconnection lines (communication lines); lines-to-ground coupling (according to 7.4), coupling via arrestors.........................51
Figure 15 – Example of a coupling/decoupling network for symmetrical high speed communication lines using the 1,2/50 µs surge..53
Figure 16 – Example of test setup for tests applied to shielded lines (according to 7.6) and to apply potential differences (according to 7.7)..67
Figure 17 – Example of test setup for shielded lines grounded only at one end (according to 7.6) and to apply potential differences (according to 7.7)...69
Figure 18 – Coupling method and test setup for tests applied to shielded lines and to apply potential differences, especially in configurations with multiple shielded cable wiring..........................71

Table 1 – Test levels...23
Table 2 – Definitions of the waveform parameters 1,2/50 µs – 8/20 µs27
Table 3 – Relationship between peak open-circuit voltage and peak short-circuit current..27
Table 4 – Definitions of the waveform parameters 10/700 µs – 5/320 µs35
Table 5 – Relationship between peak open-circuit voltage and peak short-circuit current......35
Table 6 – Voltage waveform specification at the EUT port of the coupling/decoupling network..57
Table 7 – Current waveform specification at the EUT port of the coupling/decoupling network..57
Table A.1 – Selection of the test levels (depending on the installation conditions)81
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as 'IEC Publications'). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-5 has been prepared by subcommittee 77B: High frequency phenomena, of IEC technical Committee 77: Electromagnetic compatibility.

It forms Part 4-5 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107, Electromagnetic compatibility – Guide to the drafting of electromagnetic compatibility publications.

This second edition cancels and replaces the first edition published in 1995 and its amendment 1 (2000), and constitutes a technical revision. Particularly, the clauses dedicated to coupling/decoupling networks and to test setups are more detailed.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>77B/467/FDIS</td>
<td>77B/486/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be:

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General
- General considerations (introduction, fundamental principles)
- Definitions, terminology

Part 2: Environment
- Description of the environment
- Classification of the environment
- Compatibility levels

Part 3: Limits
- Emission limits
- Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques
- Measurement techniques
- Testing techniques

Part 5: Installation and mitigation guidelines
- Installation guidelines
- Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards or as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: 61000-6-1).

This part is an International Standard which gives immunity requirements and test procedures related to surge voltages and surge currents.
1 Scope and object

This part of IEC 61000 relates to the immunity requirements, test methods, and range of recommended test levels for equipment to unidirectional surges caused by overvoltages from switching and lightning transients. Several test levels are defined which relate to different environment and installation conditions. These requirements are developed for and are applicable to electrical and electronic equipment.

The object of this standard is to establish a common reference for evaluating the immunity of electrical and electronic equipment when subjected to surges. The test method documented in this part of IEC 61000 describes a consistent method to assess the immunity of an equipment or system against a defined phenomenon.

NOTE As described in IEC Guide 107, this is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria. TC 77 and its sub-committees are prepared to co-operate with product committees in the evaluation of the value of particular immunity tests for their products.

This standard defines:
- a range of test levels;
- test equipment;
- test setups;
- test procedures.

The task of the described laboratory test is to find the reaction of the EUT under specified operational conditions, to surge voltages caused by switching and lightning effects at certain threat levels.

It is not intended to test the capability of the EUT’s insulation to withstand high-voltage stress. Direct injections of lightning currents, i.e., direct lightning strikes, are not considered in this standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(161), International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility
3 Terms and definitions

For the purposes of this document, the terms and definitions in IEC 60050(161) and the following apply.

3.1 avalanche device
diode, gas tube arrestor, or other component that is designed to break down and conduct at a specified voltage

3.2 calibration
set of operations which establishes, by reference to standards, the relationship which exists, under specified conditions, between an indication and a result of a measurement

[IEV 311-01-09]

NOTE 1
This term is based on the “uncertainty” approach.

NOTE 2
The relationship between the indications and the results of measurement can be expressed, in principle, by a calibration diagram.

3.3 clamping device
diode, varistor or other component that is designed to prevent an applied voltage from exceeding a specified value

3.4 combination wave generator
generator with 1,2/50 µs or 10/700 µs open-circuit voltage waveform and respectively 8/20 µs or 5/320 µs short-circuit current waveform

3.5 coupling network
electrical circuit for the purpose of transferring energy from one circuit to another

3.6 decoupling network
electrical circuit for the purpose of preventing surges applied to the EUT from affecting other devices, equipment or systems which are not under test

3.7 duration
absolute value of the interval during which a specified waveform or feature exists or continues

[IEC 60469-1]

This is a preview - click here to buy the full publication