INTERNATIONAL STANDARD

IEC

61190-1-3

Second edition

2007-04

Attachment materials for electronic assembly –

Part 1-3:
Requirements for electronic grade solder alloys
and fluxed and non-fluxed solid solders
for electronic soldering applications
CONTENTS

FOREWORD.. 4

1 Scope... 6

2 Normative references... 6

3 Terms and definitions... 6

4 Classification ... 8
 4.1 Alloy composition... 8
 4.2 Solder form ... 8
 4.3 Flux type .. 9
 4.4 Flux percentage and metal content ... 10
 4.5 Other characteristics.. 11

5 Requirements .. 11
 5.1 Materials ... 11
 5.2 Alloys .. 11
 5.3 Solder forms .. 12
 5.4 Flux type and form ... 13
 5.5 Flux residue dryness .. 14
 5.6 Spitting ... 14
 5.7 Solder pool ... 14
 5.8 Labelling for product identification .. 14
 5.9 Workmanship .. 14

6 Quality assurance provisions.. 15
 6.1 Responsibility for inspection and compliance .. 15
 6.2 Classification of inspections .. 15
 6.3 Materials inspection .. 20
 6.4 Qualification inspections ... 20
 6.5 Quality conformance ... 21
 6.6 Preparation of solder alloy for test .. 21

7 Preparation for delivery – Preservation, packing and packaging .. 21

Annex A (informative) Selection of various alloys and fluxes for use in electronic soldering – General information concerning IEC 61190-1-3 ... 22

Annex B (normative) Lead-free solder alloys.. 26

Figure 1 – Report form for solder alloy tests .. 16
Figure 2 – Report form for solder powder tests .. 17
Figure 3 – Report form for non-fluxed solder tests ... 18
Figure 4 – Report form for fluxed wire/ribbon solder tests .. 19

Table 1 – Solder materials .. 8
Table 2 – Flux types and designating symbols ... 10
Table 3 – Flux percentage .. 11
Table 4 – Standard solder powders ... 13
ATTACHMENT MATERIALS FOR ELECTRONIC ASSEMBLY –

Part 1-3: Requirements for electronic grade solder alloys and fluxed and non-fluxed solid solders for electronic soldering applications

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning in particular alloy compositions. IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the IEC that he/she is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with IEC. Information may be obtained from:

For Sn96Ag2,5Bi1Cu,5:
US PAT No. 4879096
Cookson Electronics Assembly Materials
600 Route 440 Jersey City, New Jersey 07304

For Sn96,5Ag3Cu,5, Sn95,8Ag3,5Cu,7 and Sn95,5Ag3,8Cu,7:
US PAT No. 5527628
Iowa State University Research Foundation, Inc.
310 Lab of Mechanics
Ames, Iowa 50011-2131, U.S.A.
For Sn88In8Ag3.5Bi,5:
JP PAT No. 3040929
For Sn96.5Ag3Cu,5, Sn95.8Ag3,5Cu,7 and Sn95.5Ag3,8Cu,7:
JP PAT No. 3027441
Matsushita Electric Industrial Co., Ltd.
Matsushita IMP Building 20F 1-3-7, Shiromi, Chouh-ku, Osaka, 540-6319, Japan

For Sn92In4Ag3.5Bi,5
JP PAT No. 2805596
Mitsui Mining & Smelting Co., Ltd.
Gate City Ohsaki-West Tower 19th Fl. 1-11-1 Osaki, Shinagawa-ku, Tokyo, 141-8584, Japan

For Sn96.5Ag3Cu,5, Sn95.8Ag3,5Cu,7, Sn95.5Ag3,8Cu,7 and Sn95.5Ag4.0Cu,5
JP PAT No. 3027441
Senju Metal Industry Co., Ltd.
Senju Hashido-cho 23, Adachi-ku, Tokyo, 120-8555, Japan

NOTE Patent rights vary between country of manufacture, sale, use and final destination; suppliers or users remain responsible for establishing the exact legal position relevant to their own situation.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61190-1-3 has been prepared by IEC technical committee 91: Electronics assembly technology.

This second edition cancels and replaces the first edition, published in 2002, and constitutes a technical revision. The main changes with regard to the first edition concern a definition of lead-free solder alloy and an amendment to Table B.1 concerning lead-free solder alloys.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>91/647/FDIS</td>
<td>91/679/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61190 series, under the general title Attachment materials for electronic assembly, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
1 Scope

This part of IEC 61190 prescribes the requirements and test methods for electronic grade solder alloys, for fluxed and non-fluxed bar, ribbon, powder solders and solder paste, for electronic soldering applications and for "special" electronic grade solders. For the generic specifications of solder alloys and fluxes, see ISO 9453, ISO 9454-1 and ISO 9454-2. This standard is a quality control document and is not intended to relate directly to the material's performance in the manufacturing process.

Special electronic grade solders include all solders which do not fully comply with the requirements of standard solder alloys and solder materials listed herein. Examples of special solders include anodes, ingots, preforms, bars with hook and eye ends, multiple-alloy solder powders, etc.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60194, Printed board design, manufacture and assembly – Terms and definitions

IEC 61190-1-2, Attachment materials for electronic assembly – Part 1-2: Requirements for solder pastes for high-quality interconnections in electronics assembly

IEC 61189-5, Test methods for electrical materials, interconnection structures and assemblies – Part 5: Test methods for printed board assemblies

IEC 61189-6, Test methods for electrical materials, interconnection structures and assemblies – Part 6: Test methods for materials used in manufacturing electronic assemblies

ISO 9001, Quality management systems – Requirements

ISO 9453, Soft solder alloys – Chemical compositions and forms

ISO-9454-1:1990, Soft soldering fluxes – Classification and requirements – Part 1: Classification, labelling and packing