Optical amplifiers –
Part 4: Maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers
CONTENTS

FOREWORD ... 4
INTRODUCTION .. 6
1 Scope and object ... 7
2 Normative references .. 7
3 Abbreviated terms ... 8
4 Maximum transmissible optical power to keep fibres damage-free 8
 4.1 General ... 8
 4.2 Fibre fuse and its propagation ... 9
 4.3 Loss-induced heating at connectors or splices .. 10
 4.4 Connector end-face damage induced by dust/contamination 11
 4.5 Fibre-coat burn/melt induced by tight fibre bending ... 13
 4.6 Summary of the fibre damage .. 14
5 Maximum transmissible optical power to keep eyes and skin safe 15
 5.1 Maximum transmissible exposure (MPE) on the surface of eye and skin 15
 5.2 Maximum permissible optical power in the fibre for the safety of eye and skin ... 15
 General ... 15
 5.2.1 Need for APR .. 17
 5.2.2 Wavelengths .. 17
 5.2.3 Locations ... 17
 5.2.4 Nominal ocular hazard distance (NOHD) .. 17
 5.2.5 Power reduction times .. 17
 5.2.6 Medical aspects of the safety of eyes and skin in existing standards 18
 6 Maximum optical power permissible for optical amplifiers from the viewpoint of fibre damage as well as eye and skin safety ... 19
7 Conclusion .. 19
Annex A (informative) General information for optical fibre fuse 20
 A.1 Introduction ... 20
 A.2 Generating mechanism ... 20
 A.3 Figure A.3 – Calculated fibre fuse propagation behaviour simulated with the SiO absorption modelVoid formation mechanism .. 23
 A.4 Propagation characteristic of a fibre fuse .. 24
 A.5 Prevention and termination ... 26
 A.5.1 General ... 26
 A.5.2 Prevention methods .. 26
 A.5.3 Termination methods .. 26
 A.6 Conclusion .. 29
Bibliography .. 30

Figure 1 – Experimental set-up for fibre fuse propagation .. 9
Figure 2 – Connection loss versus temperature increase ... 11
Figure 3 – Test set-up .. 11
Figure 4 – Surface condition contaminated with metal filings, before the test 12
Figure 5 – Variation of the power attenuation during the test at several power input values for plugs contaminated with metal filings .. 13
Figure 6 – Polishing surface condition contaminated with metal filing, after the test 13
Figure 7 – Thermo-viewer image of tightly-bent SMF with optical power of 3 W at 1 480 nm ... 14
Figure 8 – Temperature of the coating surface of SMFs against bending with optical power of 3 W at 1 480 nm ... 14
Figure 9 – Maximum permissible power in the fibre against APR power reduction time 18
Figure A.1 – Front part of the fibre fuse damage generated in the optical fibre 20
Figure A.2 – SiO absorption model .. 22
Figure A.3 – Calculated fibre fuse propagation behaviour simulated with the SiO absorption model Void formation mechanism .. 23
Figure A.4 – Series of optical micrographs showing damage generated by 9,0 W 1 480 nm laser light suggesting a mechanism of periodic void formation 24
Figure A.5 – Images of fibre fuse ignition taken with an ultra-high speed camera and an optical micrograph of the damaged fibre ... 25
Figure A.6 – Power density dependence of the fibre-fuse propagation velocity 25
Figure A.7 – Optical micrographs showing front part of the fibre fuse damage generated in SMF-28 fibres with various laser intensities (1 480 nm) 26
Figure A.8 – Principle of the optical fibre fuse passive termination method and photograph of the fibre fuse terminator which adopted TEC structure .. 27
Figure A.9 – Photograph of hole-assistant fibre and fibre fuse termination using a hole-assistant fibre ... 28
Figure A.10 – Example of fibre fuse active termination scheme 29
Figure A.11 – Transformation of electric signal by optical fibre fuse 29

Table 1 – Threshold power of fibre fuse propagation for various fibres 9
Table 2 – Measurement conditions .. 10
Table 3 – Examples of power limits for optical fibre communication systems having automatic power reduction to reduce emissions to a lower hazard level 16
Table 4 – Location types within an optical fibre communication system and their typical installations ... 17
INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL AMPLIFIERS –

Part 4: Maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liasing with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example “state of the art”.

IEC TR 61292-4, which is a technical report, has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

This third edition cancels and replaces the second edition, published in 2010, and constitutes a technical revision with updates reflecting new research in the subject area.
The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>86C/1158/DTR</td>
<td>86C/1200/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61292 series, published under the general title, *Optical amplifiers*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under “http://webstore.iec.ch” in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This technical report is dedicated to the subject of maximum permissible optical power for damage-free and safe use of optical amplifiers, including Raman amplifiers. Since the technology is quite new and still evolving, amendments and new editions to this report can be expected.

Many new types of optical amplifiers are entering the marketplace and research is also stimulating many new types of fibre and non-fibre based optical amplifier research. With the introduction of such technologies as long-haul, over 40 Gb/s, WDM transmission and Raman amplification, some optical amplifiers may involve optical pump sources with extremely high optical power – up to, possibly, several watts.

Excessively high optical power may cause physical damage to the fibres/optical components/equipment as well as present medical danger to the human eye and skin.

The possibility of fibre damage caused by high optical intensity has recently been discussed at some technical conferences. The use of high intensity optical amplifiers may cause problems in the fibre such as a fibre fuse, a heating in the splice point (connection point), and the fibre end-face damage due to dust and the fibre coat burning due to tight fibre bending. IEC SC 86A (Fibres and cables) has published IEC TR 62547, and SC 86B (Fibre optic interconnecting devices and passive components) has published IEC TR 62627-01. IEC TC 31 (Equipment for explosive atmospheres) is also discussing the risk of ignition of hazardous environments by radiation from optical equipment.

Medical aspects have long been discussed at standards groups. IEC TC 76 (Optical radiation safety and laser equipment) precisely describes in IEC 60825-2 the concept of hazard level and labelling and addresses the safety aspects of lasers specifically in relation to tissue damage.

ITU-T Study Group 15 (Optical and other transport networks) has published Recommendation G.664, which primarily discusses the automatic laser power reduction functionality for safety.

With the recent growth of interest in fibre Raman amplifiers, however, some difficulties have been identified among optical amplifier users and manufacturers in fully understanding the technical details and requirements across all such standards and agreements.

This technical report provides a simple informative guideline on the maximum optical power permissible for optical amplifiers for optical amplifier users and manufacturers.
OPTICAL AMPLIFIERS

Part 4: Maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers

1 Scope and object

This part of IEC 61292, which is a technical report, applies to all commercially available optical amplifiers (OAs), including optical fibre amplifiers (OFAs) using active fibres, as well as Raman amplifiers. Semiconductor optical amplifiers (SOAs) using semiconductor gain media are also included.

This technical report provides a simple informative guideline on the threshold of high optical power that causes high-temperature damage of fibre. Also discussed is optical safety for manufacturers and users of optical amplifiers by reiterating substantial parts of existing standards and agreements on eye and skin safety.

To identify the maximum permissible optical power in the optical amplifier from damage-free and safety viewpoints, this technical report identifies the following values:

a) the optical power limit that causes thermal damage to the fibre, such as fibre fuse and fibre-coat burning;
b) the maximum permissible exposure (MPE) to which the eyes/skin can be exposed without consequential injury;
c) the optical power limit in the fibre that causes MPE on the eyes/skin after free-space propagation from the fibre;
d) the absolute allowable damage-free and safe level of optical power of the optical amplifier by comparing (a) and (c).

The objective of this technical report is to minimize potential confusion and misunderstanding in the industry that might cause unnecessary alarm and hinder the progress and acceptance of advancing optical amplifier technologies and markets.

It is important to point out that the reader should always refer to the latest international standards and agreements because the technologies concerned are rapidly evolving.

The present technical report will be frequently reviewed and will be updated by incorporating the results of various studies related to OAs and OA-supported optical systems in a timely manner.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Amendment 1 (2006)
Amendment 2 (2010)

IEC TR 62547, Guidelines for the measurement of high-power damage sensitivity of single-mode fibres to bends – Guidance for the interpretation of results

IEC TR 62627-01, Fibre optic interconnecting devices and passive components – Part 01: Fibre optic connector cleaning methods

ITU-T Recommendation G.664:2012, Optical safety procedures and requirements for optical transport systems

Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

- ALS: automatic laser shutdown
- APR: automatic power reduction
- DSF: dispersion shifted fibre
- LOS: loss of signal
- MFD: mode field diameter
- MPE: maximum permissible exposure
- MPI-R: single channel receive main path Interface reference point
- MPI-S: single channel source main path interface reference point
- NOHD: nominal ocular hazard distance
- NZ-DSF: non-zero dispersion shifted single-mode optical fibre
- OA: optical amplifier
- OFA: optical fibre amplifier
- SMF: single mode fibre
- SOA: semiconductor optical amplifier

4 Maximum transmissible optical power to keep fibres damage-free

4.1 General

The use and reasonably foreseeable misuse of high intensity optical amplifiers may cause problems in the fibre such as

a) fibre fuse and its propagation,
b) heating in the splice point/connection point,
c) fibre end-face damage due to dust and other contamination,
d) fibre coat burning and ignition of hazardous environments due to tight fibre bending or breakage.

This clause introduces their results concerning the above issues to give guidelines for the damage-free use of optical amplifiers. However, it should be noted that the following results are only valid under the conditions tested and that a higher power might be allowed under different conditions.