INTERNATIONAL STANDARD

Wind turbines –
Part 11: Acoustic noise measurement techniques
CONTENTS

FOREWORD ... 5
INTRODUCTION ... 7
1 Scope ... 8
2 Normative references ... 8
3 Terms and definitions ... 9
4 Symbols and units ... 12
5 Outline of method ... 13
6 Instrumentation ... 14
 6.1 Acoustic instruments ... 14
 6.1.1 General ... 14
 6.1.2 Equipment for the determination of the equivalent continuous A-weighted sound pressure level ... 14
 6.1.3 Equipment for the determination of A-weighted 1/3-octave band spectra .. 14
 6.1.4 Equipment for the determination of narrow band spectra 14
 6.1.5 Microphone with measurement board and windscreen .. 14
 6.1.6 Acoustic calibrator .. 16
 6.1.7 Data recording/playback systems .. 16
 6.2 Non-acoustic Instruments .. 16
 6.2.1 General ... 16
 6.2.2 Anemometers .. 16
 6.2.3 Electric power transducer .. 17
 6.2.4 Other instrumentation .. 17
 6.3 Traceable calibration ... 17
7 Acoustic measurements and measurement procedures .. 17
 7.1 Acoustic measurement positions ... 17
 7.2 Acoustic measurements .. 20
 7.2.1 General ... 20
 7.2.2 Acoustic measurement requirements ... 20
 7.2.3 A-weighted sound pressure level ... 21
 7.2.4 A-weighted 1/3-octave band measurements .. 21
 7.2.5 A-weighted narrow band measurements ... 21
 7.2.6 Optional acoustic measurements at positions 2, 3 and 4 21
 7.2.7 Other optional measurements .. 21
8 Non-acoustic measurements .. 21
 8.1 General ... 21
 8.2 Wind speed measurements ... 22
 8.2.1 Determination of the wind speed during wind turbine operation 22
 8.2.2 Wind speed measurements during background noise measurements 22
 8.3 Downwind direction ... 24
 8.4 Other atmospheric conditions .. 24
 8.5 Rotor speed and pitch angle measurement .. 24
9 Data reduction procedures .. 24
 9.1 General methodology for sound power levels and 1/3-octave band levels 24
 9.2 Calculation of sound pressure levels ... 27
9.2.1 General ... 27
9.2.2 Calculation of average sound spectra and uncertainty per bin 27
9.2.3 Calculation of average wind speed and uncertainty per bin 29
9.2.4 Calculation of noise levels at bin centres including uncertainty 30
9.3 Apparent sound power levels ... 31
9.4 Apparent sound power levels with reference to wind speed in 10 m height 32
9.5 Tonal audibility .. 33
 9.5.1 General methodology for tonality ... 33
 9.5.2 Identifying possible tones .. 34
 9.5.3 Classification of spectral lines within the critical band 34
 9.5.4 Identified tone ... 37
 9.5.5 Determination of the tone level .. 37
 9.5.6 Determination of the masking noise level ... 37
 9.5.7 Determination of tonality .. 37
 9.5.8 Determination of audibility ... 38
 9.5.9 Background noise .. 38
10 Information to be reported .. 39
 10.1 General ... 39
 10.2 Characterisation of the wind turbine .. 39
 10.3 Physical environment .. 39
 10.4 Instrumentation ... 40
 10.5 Acoustic data .. 40
 10.6 Non-acoustic data ... 41
 10.7 Uncertainty .. 41
Annex A (informative) Other possible characteristics of wind turbine noise emission and their quantification ... 42
Annex B (informative) Assessment of turbulence intensity .. 44
Annex C (informative) Assessment of measurement uncertainty 45
Annex D (informative) Apparent roughness length ... 47
Annex E (informative) Characterization of a secondary wind screen 49
Annex F (normative) Small wind turbines ... 53
Annex G (informative) Air absorption .. 57
Bibliography ... 58

Figure 1 – Mounting of the microphone ... 15
Figure 2 – Picture of microphone and measurement board.. 16
Figure 3 – Standard pattern for microphone measurement positions (plan view) 18
Figure 4 – Illustration of the definitions of R_0 and slant distance R_1 19
Figure 5 – Acceptable meteorological mast position (hatched area) 22
Figure 6 – Flowchart showing the data reduction procedure .. 26
Figure 7 – Flowchart for determining tonal audibility for each wind speed bin 33
Figure 8 – Illustration of $L_{70\%}$ level in the critical band .. 35
Figure 9 – Illustration of $L_{p_n,avg}$ level and lines classified as masking 36
Figure 10 – Illustration of $L_{70\%} + 6$ dB criterion .. 36
Figure 11 – Illustration of classifying all spectral lines .. 37
Figure E.1 – Example 1 of a secondary wind screen .. 50
Figure E.2 – Example 2 of secondary wind screen ... 51
Figure E.3 – Example on insertion loss from Table E.1 ... 52
Figure F.1 – Allowable region for meteorological mast position as a function of β – Plan view ... 54
Figure F.2 – Example immission noise map .. 56
Figure G.1 – Example of 1/3-octave spectrum ... 57

Table C.1 – Examples of possible values of type B uncertainty components relevant for apparent sound power spectra ... 46
Table C.2 – Examples of possible values of type B uncertainty components for wind speed determination relevant for apparent sound power spectra 46
Table D.1 – Roughness length .. 47
Table E.1 – Example on reporting of insertion loss ... 51
INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND TURBINES –

Part 11: Acoustic noise measurement techniques

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-11 has been prepared by IEC technical committee 88: Wind turbines.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/436/FDIS</td>
<td>88/440/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61400 series, under the general title Wind turbines, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

A bilingual edition of this document may be issued at a later date.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The purpose of this part of IEC 61400 is to provide a uniform methodology that will ensure consistency and accuracy in the measurement and analysis of acoustical emissions by wind turbine generator systems. This International Standard has been prepared with the anticipation that it would be applied by:

- wind turbine manufacturers striving to meet well defined acoustic emission performance requirements and/or a possible declaration system (e.g. IEC/TS 61400-14);
- wind turbine purchasers for specifying performance requirements;
- wind turbine operators who may be required to verify that stated, or required, acoustic performance specifications are met for new or refurbished units;
- wind turbine planners or regulators who must be able to accurately and fairly define acoustical emission characteristics of a wind turbine in response to environmental regulations or permit requirements for new or modified installations.

This standard provides guidance in the measurement, analysis and reporting of complex acoustic emissions from wind turbine generator systems. The standard will benefit those parties involved in the manufacture, installation, planning and permitting, operation, utilization, and regulation of wind turbines. The measurement and analysis techniques recommended in this document should be applied by all parties to ensure that continuing development and operation of wind turbines is carried out in an atmosphere of consistent and accurate communication relative to environmental concerns. This standard presents measurement and reporting procedures expected to provide accurate results that can be replicated by others.
WIND TURBINES –

Part 11: Acoustic noise measurement techniques

1 Scope

This part of IEC 61400 presents measurement procedures that enable noise emissions of a wind turbine to be characterised. This involves using measurement methods appropriate to noise emission assessment at locations close to the machine, in order to avoid errors due to sound propagation, but far enough away to allow for the finite source size. The procedures described are different in some respects from those that would be adopted for noise assessment in community noise studies. They are intended to facilitate characterisation of wind turbine noise with respect to a range of wind speeds and directions. Standardisation of measurement procedures will also facilitate comparisons between different wind turbines.

The procedures present methodologies that will enable the noise emissions of a single wind turbine to be characterised in a consistent and accurate manner. These procedures include the following:

- location of acoustic measurement positions;
- requirements for the acquisition of acoustic, meteorological, and associated wind turbine operational data;
- analysis of the data obtained and the content for the data report; and
- definition of specific acoustic emission parameters, and associated descriptors which are used for making environmental assessments.

This International Standard is not restricted to wind turbines of a particular size or type. The procedures described in this standard allow for the thorough description of the noise emission from a wind turbine. A method for small wind turbines is described in Annex F.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60688, *Electrical measuring transducers for converting a.c. electrical quantities to analogue or digital signals*

IEC 60942:2003, *Electroacoustics – Sound calibrators*

IEC 61400-12-2, *Wind turbines – Part 12-2: Power performance verification of electricity producing wind turbines*¹

¹ To be published.
3 Terms and definitions

For the purposes of this standard, the following terms and definitions apply.

3.1 apparent sound power level

L_{WA}

A-weighted sound power level re. 1 pW of a point source at the rotor centre with the same emission in the downwind direction as the wind turbine being measured, L_{WA} is determined at bin centre wind speeds at hub height.

Note 1 to entry: Apparent sound power level is expressed in dB re. 1 pW.

3.2 apparent sound power level with reference to wind speed at 10 m height

$L_{WA,10m}$

A-weighted sound power level re. 1 pW of a point source at the rotor centre with the same emission in the downwind direction as the wind turbine being measured, $L_{WA,10m}$ are determined at bin centre wind speeds at 10 m height within the measured wind speed range.

Note 1 to entry: Apparent sound power level with reference to wind speed at 10 m height is expressed in dB re. 1 pW.

3.3 audibility criterion

L_a

Frequency dependent criterion curve determined from listening tests, and reflecting the subjective response of a "typical" listener to tones of different frequencies.

Note 1 to entry: Audibility criterion is expressed in dB re. 20 μPa.

3.4 sound pressure levels

3.4.1 A-weighted sound pressure levels

L_A

Sound pressure levels measured with the A frequency weighting networks specified in IEC 61672.

Note 1 to entry: A-weighted sound pressure levels are expressed in dB re. 20 μPa.

3.4.2 C-weighted sound pressure levels

L_C

Sound pressure levels measured with the C frequency weighting networks specified in IEC 61672.

Note 1 to entry: C-weighted sound pressure levels are expressed in dB re. 20 μPa.