Test methods for accessories for power cables with rated voltages from 6 kV (U_m = 7.2 kV) up to 30 kV (U_m = 36 kV)
Test methods for accessories for power cables with rated voltages from 6 kV ($U_m = 7.2$ kV) up to 30 kV ($U_m = 36$ kV)
CONTENTS

FOREWORD ... 7

1 Scope11

2 Normative references ...11

3 Test installations and conditions...13

4 AC voltage tests ...13
 4.1 Dry test for all accessories ..13
 4.2 Wet test for outdoor terminations ...13
 4.3 Test in water for stop ends ..15

5 DC voltage tests...15
 5.1 Installation ..15
 5.2 Method ..15

6 Impulse voltage tests ..15
 6.1 Installation ..15
 6.2 Method ..15
 6.3 Test at elevated temperature ...15

7 Partial discharge test ..17
 7.1 Method ..17
 7.2 Test at elevated temperature ...17

8 Tests at elevated temperature ..17
 8.1 Installation and connection ..17
 8.2 Measurement of temperature ...17

9 Heating cycles voltage test...25
 9.1 Installation ..25
 9.2 Test in air ..25
 9.3 Test in water ...25
 9.4 Immersion test for outdoor terminations ...27

10 Thermal short-circuit test (screen) ..27
 10.1 Installation ..27
 10.2 Method ..27

11 Thermal short-circuit test (conductor) ...29
 11.1 Installation ..29
 11.2 Method ..29

12 Dynamic short-circuit test ...31
 12.1 Installation ..31
 12.2 Method ..31

13 Humidity and salt fog tests..31
 13.1 Apparatus ...31
 13.2 Installation ..33
 13.3 Method ..33

14 Impact test at ambient temperature ...33

15 Screen resistance measurement ...37
 15.1 Installation ..37
 15.2 Method ..37
16 Screen leakage current measurement ... 37
 16.1 Installation ... 37
 16.2 Method .. 37
17 Screen fault current initiation test ... 39
 17.1 Installation ... 39
 17.2 Method .. 41
18 Operating force test ... 43
 18.1 Installation ... 43
 18.2 Method .. 43
19 Operating eye test ... 43
 19.1 Installation ... 43
 19.2 Method .. 43
20 Capacitive test point performance ... 45
 20.1 Installation ... 45
 20.2 Test method .. 45

Annex A (informative) Determination of the cable conductor temperature 47
Annex B (informative) Details of the test chamber and spray equipment for humidity and salt fog tests ... 57

Bibliography ... 61

Figure 1 – Terminations tested in air ... 19
Figure 2 – Joints tested in air ... 19
Figure 3 – Separable connectors tested in air .. 21
Figure 4 – Joints tested under water ... 21
Figure 5 – Separable connectors tested under water .. 23
Figure 6 – Outdoor terminations tested under water ... 23
Figure 7 – Heating cycle ... 25
Figure 8 – Typical impact test apparatus for joints ... 35
Figure 9 – Test arrangement for the screen leakage current measurement 39
Figure 10 – Test arrangement for screen fault current initiation test 41
Figure A.1 – Reference cable ... 49
Figure A.2 – Arrangement of the thermocouples .. 49
Figure A.3 – Current/temperatures curves ... 53
INTERNATIONAL ELECTROTECHNICAL COMMISSION

TEST METHODS FOR ACCESSORIES
FOR POWER CABLES WITH RATED VOLTAGES
FROM 6 kV (U_m = 7.2 kV) UP TO 30 kV (U_m = 36 kV)

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61442 has been prepared by IEC technical committee 20: Electric cables.

This second edition of IEC 61442 cancels and replaces the first edition of IEC 61442, published in 1997, and constitutes a technical revision.

Significant technical changes with respect to the previous edition are as follows:

a) a test in water has been added for stop ends;

b) the heating cycles voltage test has been revised to clarify testing in air and water;

c) the testing conditions for the short-circuit tests have been redefined;

d) additional information has been provided for testing separable connectors with a metallic housing;
e) tests not required by IEC, i.e. an immersion test for outdoor terminations and an impact test, have been included in order to have a common test method document with CENELEC under the IEC/CLC Dresden agreement.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/748/FDIS</td>
<td>20/762/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under “http://webstore.iec.ch” in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.
1 Scope

This International Standard specifies the test methods to be used for type testing accessories for power cables with rated voltage from 3,6/6 (7,2) kV up to 18/30 (36) kV. Test methods are specified for accessories for extruded and paper insulated cables according to IEC 60502-2 and IEC 60055-1 respectively.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including amendments) applies.

IEC 60055-1: Paper-insulated metal-sheathed cables for rated voltages up to 18/30 kV (with copper or aluminium conductors and excluding gas-pressure and oil-filled cables) – Part 1: Tests on cables and their accessories

IEC 60060-1:1989, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60230:1966, Impulse tests on cables and their accessories

IEC 60270:2000, High-voltage test techniques – Partial discharge measurements

IEC 60502-2:2005, Power cables with extruded insulation and their accessories for rated voltages from 1 kV ($U_m = 1,2$ kV) up to 30 kV ($U_m = 36$ kV) – Part 2: Cables for rated voltages from 6 kV ($U_m = 7,2$ kV) up to 30 kV ($U_m = 36$ kV)

IEC 60986:2000, Short-circuit temperature limits of electric cables with rated voltages from 6 kV ($U_m = 7,2$ kV) up to 30 kV ($U_m = 36$ kV)

IEC 61238-1:2003, Compression and mechanical connectors for power cables for rated voltages up to 30 kV ($U_m = 36$ kV) – Part 1: Test methods and requirements