Low-voltage surge protective devices –
Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles

Parafoudres basse tension –
Partie 12: Parafoudres connectés aux réseaux de distribution basse tension –
Principes de choix et d’application
# CONTENTS

**FOREWORD**.................................................................................................................................8

0 Introduction .......................................................................................................................................11

0.1 General ........................................................................................................................................11

0.2 Keys to understanding the structure of this standard ............................................................11

1 Scope.............................................................................................................................................13

2 Normative references ..................................................................................................................13

3 Terms, definitions and abbreviated terms ..................................................................................14

3.1 Terms and definitions ..................................................................................................................14

3.2 List of abbreviations and acronyms used in this standard ......................................................25

4 Systems and equipment to be protected ....................................................................................26

4.1 Low-voltage power distribution systems ................................................................................26

4.1.1 Lightning overvoltages and currents ..................................................................................27

4.1.2 Switching overvoltages .......................................................................................................28

4.1.3 Temporary overvoltages $U_{TOV}$ ....................................................................................28

4.2 Characteristics of the equipment to be protected ..................................................................30

5 Surge protective devices .............................................................................................................31

5.1 Basic functions of SPDs .............................................................................................................31

5.2 Additional requirements ............................................................................................................31

5.3 Classification of SPDs ................................................................................................................31

5.3.1 SPD: classification ................................................................................................................31

5.3.2 Typical design and topologies .............................................................................................32

5.4 Characteristics of SPDs .............................................................................................................33

5.4.1 Service conditions described in IEC 61643-1 .....................................................................33

5.4.2 List of parameters for SPD selection ....................................................................................34

5.5 Additional information on characteristics of SPDs .................................................................35

5.5.1 Information related to power-frequency voltages .................................................................35

5.5.2 Information related to surge currents ....................................................................................36

5.5.3 Information related to voltage protection level provided by SPDs ..................................37

5.5.4 Information related to SPD failure modes ..........................................................................39

5.5.5 Information related to short-circuit withstand ......................................................................40

5.5.6 Information related to load current $I_{L}$ and to voltage drop (for two-port SPDs or one-port SPDs with separate input and output terminals) ..................................................40

5.5.7 Information related to change of characteristics of SPDs ..................................................40

6 Application of SPDs in low-voltage power distribution systems ...........................................40

6.1 Installation and its effect on the protection given by SPDs .......................................................40

6.1.1 Possible modes of protection and installation ....................................................................41

6.1.2 Influence of the oscillation phenomena on the protective distance (called separation distance in some countries) ........................................................................................................43

6.1.3 Influence of the connecting lead length ...............................................................................44

6.1.4 Need for additional protection ............................................................................................45

6.1.5 Consideration regarding location of the SPD depending on the classes of test .................46

6.1.6 Protection zone concept ........................................................................................................46

6.2 Selection of SPD .........................................................................................................................48

6.2.1 Selection of $U_C$, $U_T$, $I_n$, $I_{imp}$, $I_{max}$ and $U_{OC}$ of the SPD ..................................49

6.2.2 Protective distance .................................................................................................................52
6.2.3 Prospective life and failure mode

6.2.4 Interaction between SPDs and other devices

6.2.5 Choice of the voltage protection level $U_p$

6.2.6 Coordination between the chosen SPD and other SPDs

6.3 Characteristics of auxiliary devices

6.3.1 Disconnecting devices

6.3.2 Event counters

6.3.3 Status indicator

7 Risk analysis

Annex A (informative) Typical information given with inquiries and tenders and explanation of testing procedures

A.1 Information given with inquiries

A.1.1 System data

A.1.2 SPD application considerations

A.1.3 Characteristics of SPD

A.1.4 Additional equipment and fittings

A.1.5 Any special abnormal conditions

A.2 Information given with tender

A.3 Explanation of testing procedures used in IEC 61643-1

A.3.1 Determination of $U_{res}$ for SPDs tested according to class I and class II tests

A.3.2 Impulse waveshape for assessment of $U_{res}$

A.3.3 Influence of a back filter on determination of $U_{res}$

A.3.4 Operating duty test for SPDs

A.3.5 TOV failure test

A.3.6 Differences in the testing conditions of Type 1 (test class I), 2 (test class II) and 3 (test class III) SPDs

A.3.7 Short-circuit withstand capability test in conjunction with overcurrent protection (if any)

Annex B (informative) Examples of relationship between $U_c$ and the nominal voltage used in some systems and example of relationship between $U_p$ and $U_c$ for ZnO varistor

B.1 Relationship between $U_C$ and the nominal voltage of the system

B.2 Relationship between $U_p$ and $U_c$ for a ZnO varistor

Annex C (informative) Environment – Surge voltages in LV systems

C.1 General

C.2 Lightning overvoltages

C.2.1 Surges transferred from MV to the LV system

C.2.2 Overvoltages caused by direct flashes to LV distribution systems

C.2.3 Induced overvoltages in LV distribution systems

C.2.4 Overvoltages caused by flashes to a lightning protection systems or an area of close vicinity

C.3 Switching overvoltages

C.3.1 General description

C.3.2 Circuit-breaker and switch operations

C.3.3 Fuse operations (current-limiting fuses)

Annex D (informative) Partial lightning current calculations

Annex E (informative) TOV in the low-voltage system due to faults between high-voltage systems and earth
E.1 General .......................................................................................................................... 75
E.2 Example of a TT system – Calculation of the possible temporary overvoltages .......... 76
  E.2.1 Possible stresses on equipment in low-voltage installations due to earth faults in a high-voltage system ................................................................. 76
  E.2.2 Characteristics of the high-voltage system ............................................................ 77
  E.2.3 TOV in low-voltage system due to faults in the high-voltage system .................... 77
  E.2.4 Conclusions ......................................................................................................... 78
E.3 Values of the temporary overvoltages according to IEC 60364-4-44 .......................... 78
E.4 Values of the temporary overvoltages for the US TN C-S system .............................. 88
Annex F (informative) Coordination rules and principles .................................................. 90
  F.1 General .................................................................................................................... 90
  F.2 Analytical studies: simple case of the coordination of two ZnO varistor based SPDs ........ 90
    F.2.1 General ........................................................................................................... 90
    F.2.2 Conclusion ...................................................................................................... 92
  F.3 Analytical study: case of coordination between a gap-based SPD and a ZnO varistor based SPD ....................................................................................... 93
    F.3.1 General ........................................................................................................... 93
    F.3.2 Example of the calculation of the estimated values required for a decoupling inductance between a gap and a varistor ........................................ 94
    F.3.3 Conclusion ...................................................................................................... 95
  F.4 Analytical study: general coordination of two SPDs .................................................. 95
  F.5 Let-through energy (LTE) method ............................................................................ 96
    F.5.1 General ........................................................................................................... 96
    F.5.2 Method ............................................................................................................ 97
Annex G (informative) Examples of application ................................................................. 99
  G.1 Domestic application ............................................................................................ 99
  G.2 Industrial application .......................................................................................... 101
  G.3 Presence of a lightning protection system ............................................................ 105
Annex H (informative) Examples of application of the risk analysis ................................. 107
Annex I (informative) System stresses ............................................................................... 111
  I.1 Lightning overvoltage and currents [4.1.1] ............................................................. 111
    I.1.1 Aspects of the power distribution system that affect the need for an SPD ............ 111
    I.1.2 Sharing of surge current within a structure ..................................................... 111
  I.2 Switching overvoltages [4.1.2] ................................................................................ 112
  I.3 Temporary overvoltages $U_{TOV}$ [4.1.3] ................................................................. 113
Annex J (informative) Criteria for selection of SPDs .......................................................... 114
  J.1 $U_T$ temporary overvoltage characteristic [5.5.1.2] ................................................ 114
  J.2 SPD failure modes [5.5.4] ..................................................................................... 114
Annex K (informative) Application of SPDs ..................................................................... 117
  K.1 Location and protection given by SPDs [6.1] ....................................................... 117
    K.1.1 Possible modes of protection and installation [6.1.1] ....................................... 117
    K.1.2 Influence of the oscillation phenomena on the protective distance [6.1.2] ...... 126
    K.1.3 Protection zone concept [6.1.6] .................................................................... 127
  K.2 Selection of SPDs .................................................................................................. 129
    K.2.1 Selection of $U_C$ [6.2.1] ................................................................................ 129
    K.2.2 Coordination problems [6.2.6.2] .................................................................... 130
Annex L (informative) Risk analysis ................................................................................... 133
L.1 Group A – Environmental.............................................................................................. 133
L.2 Group B – Equipment and facilities............................................................................... 133
L.3 Group C – Economics and service interruption ............................................................. 134
L.4 Group D – Safety.......................................................................................................... 135
L.5 Group E – Cost of protection ........................................................................................ 135
Annex M (informative) Immunity vs. insulation withstand.................................................... 136
Annex N (informative) Examples of SPD installation in power distribution boards in some countries ................................................................................................................. 138
Annex O (informative) Coordination when equipment has both signalling and power terminals .......................................................................................................................................................................................... 143
Annex P (informative) Short circuit backup protection and surge withstand ....................... 150
P.1 Introduction .................................................................................................................. 150
P.2 Information single shot 8/20 and 10/350 fuses withstand .............................................. 150
P.3 Fuse Influencing factors (reduction) for preconditioning and operating duty test ........... 151
P.4 Specific examples with estimated range of factors for reduction of single shot fuse withstand .......................................................................................................................................................................................... 151
Bibliography................................................................................................................... 153
Figure E.6 – IT system, example c1 ................................................................. 83
Figure E.7 – IT system, example c2 ................................................................. 84
Figure E.8 – IT system, example d ................................................................. 85
Figure E.9 – IT system, example e1 ................................................................. 86
Figure E.10 – IT system, example e2 .............................................................. 87
Figure E.11 – US TN-C-S System ................................................................. 88
Figure F.1 – Two ZnO varistors with the same nominal discharge current ........ 91
Figure F.2 – Two ZnO varistors with different nominal discharge currents .......... 92
Figure F.3 – Example of coordination of a gap-based SPD and a ZnO varistor based SPD ................................................................. 95
Figure F.4 – LTE – Coordination method with standard pulse parameters .......... 96
Figure G.1 – Domestic installation ............................................................... 100
Figure G.2 – Industrial installation ............................................................... 103
Figure G.3 – Circuitry of industrial installation ............................................. 104
Figure G.4 – example for a lightning protection system ............................... 106
Figure I.1 – Example of diversion of lightning current into the external services (TT system) ................................................................. 112
Figure J.1 – Typical curve for $U_T$ of an SPD .............................................. 114
Figure J.2 – Internal disconnector in the case of a two-port SPD .................... 115
Figure J.3 – Use of parallel SPDs ................................................................. 116
Figure K.1 – Installation of surge protective devices in TN-systems ............... 118
Figure K.2a – Connection Type 1 ................................................................. 119
Figure K.2b – Connection Type 2 ................................................................. 120
Figure K.2 – Installation of surge protective devices in TT-systems (SPD downstream of the RCD) ................................................................. 120
Figure K.3 – Installation of surge protective devices in TT-systems (SPD upstream of the RCD) ................................................................. 121
Figure K.4 – Installation of surge protective devices in IT-systems without distributed neutral ................................................................. 122
Figure K.5 – Typical installation of SPD at the entrance of the installation in case of a TN C-S system ................................................................. 123
Figure K.6 – General way of installing one-port SPDs .................................... 124
Figure K.7 – Examples of acceptable and unacceptable SPD installations regarding EMC aspects ................................................................. 125
Figure K.8 – Physical and electrical representations of a system where equipment being protected is separated from the SPD giving protection ......................... 126
Figure K.9 – Possible oscillation between a ZnO SPD and the equipment to be protected ................................................................. 126
Figure K.10 – Example of voltage doubling .................................................. 127
Figure K.11 – Subdivision of a building into protection zones ......................... 128
Figure K.12a – Residual voltage on varistors ................................................ 130
Figure K.12b – Sharing of current between two varistors .............................. 131
Figure K.12 – Coordination of two ZnO varistors ......................................... 131
Figure N.1 – A wiring diagram of an SPD connected on the load side of the main incoming isolator via a separate isolator (which could be included in the SPD enclosure) .... 138
Figure N.2 – SPD connected to the nearest available outgoing MCB to the incoming supply (TNS installation typically seen in the UK) ............................................................... 139

Figure N.3 – A single line-wiring diagram of an SPD connected in shunt on the first outgoing way of the distribution panel via a fuse (or MCB) ..................................................................... 140

Figure N.4 – SPD connected to the nearest available circuit breaker on the incoming supply (US three phase 4W + G, TN-C-S installation) ............................................................... 141

Figure N.5 – SPD connected to the nearest available circuit breaker on the incoming supply (US single (split) phase 3W + G, 120/240 V system - typical for residential and small office applications) ..................................................................................................... 142

Figure O.1 – Example of a PC with modem in a US power and communication system ...... 144

Figure O.2 – Schematic of circuit of Figure O.1 used for experimental test ......................... 145

Figure O.3 – Voltage recorded across reference points for the PC/modem during a surge in the example .......................................................................................................... 146

Figure O.4 – Typical TT system used for simulations ........................................................... 147

Figure O.5 – Voltage and current waveshapes when a multiservice SPD is applied to circuit of Figure O.1 .......................................................................................................... 149

Table 1 – Maximum TOV values as given in IEC 60634-4-44 ................................................ 29

Table 2 – Preferred values of $I_{imp}$ ................................................................................ 37

Table 3 – Possible modes of protection for various LV systems ........................................ 43

Table 4 – Minimum recommended $U_c$ of the SPD for various power systems ..................... 49

Table 5 – Typical TOV test values ..................................................................................... 50

Table B.1 – Relationship between $U_c$ and nominal system voltage .................................. 64

Table B.2 – Relationship between $U_p/U_c$ for ZnO varistors ........................................... 65

Table F.1 – .................................................................................................................... 98

Table F.2 – .................................................................................................................... 98

Table F.3 – .................................................................................................................... 98

Table O.1 – Simulation results ....................................................................................... 148

Table P.1 – Examples of ratio between single shot withstand and full preconditioning/operating duty test .................................................................................................................. 152
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61643-12 has been prepared by subcommittee 37A: Low-voltage surge protective devices, of IEC technical committee 37: Surge arresters.

This second edition of IEC 61643-12 cancels and replaces the first edition published in 2002. It constitutes a technical revision. Specific change with respect to the previous edition is the incorporation of Amendment 1, which was not published separately due to the number of changes and pages.

This standard shall be used in conjunction with IEC 61643-1:2005, Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>37A/209/FDIS</td>
<td>37A/212/RVD</td>
</tr>
</tbody>
</table>

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

IEC TC 37, SC 37A and SC 37B have adopted a new numbering scheme for all IEC publications developed within these committees.

In this standard, the IEC 61643 series of publications covers all the publications from SC 37A and SC 37B according to the table below with the common general title *Low-voltage surge protective devices*.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
<th>Present document</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61643-11</td>
<td>Low-voltage surge protective devices – Part 11: Surge protective devices connected to low-voltage power distribution systems – Performance requirements and testing methods</td>
<td>IEC 61643-1</td>
</tr>
<tr>
<td>IEC 61643-12</td>
<td>Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power distribution systems – Selection and application principles</td>
<td>IEC 61643-12</td>
</tr>
<tr>
<td>IEC 61643-21</td>
<td>Low-voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods</td>
<td>IEC 61643-21</td>
</tr>
<tr>
<td>IEC 61643-22</td>
<td>Low-voltage surge protective devices – Part 22: Surge protective devices connected to telecommunications and signalling networks – Selection and application principles</td>
<td>IEC 61643-22</td>
</tr>
<tr>
<td>IEC 61643-301</td>
<td>Low-voltage surge protective devices – Part 301: Components for surge protective devices – General test specifications</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-302</td>
<td>Low-voltage surge protective devices – Part 302: Components for surge protective devices – General performance specifications</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-303</td>
<td>Low-voltage surge protective devices – Part 303: Components for surge protective devices – General selection and application principles</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-311</td>
<td>Low-voltage surge protective devices – Part 311: Components for surge protective devices – Test specification for gas discharge tubes (GDTs)</td>
<td>IEC 61643-311</td>
</tr>
<tr>
<td>IEC 61643-312</td>
<td>Low-voltage surge protective devices – Part 312: Components for surge protective devices – Performance specification for gas discharge tubes (GDTs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-313</td>
<td>Low-voltage surge protective devices – Part 313: Components for surge protective devices – Selection and applications principles for gas discharge tubes (GDTs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-321</td>
<td>Low-voltage surge protective devices – Part 321: Components for surge protective devices – Test specification for avalanche breakdown diodes (ABDs)</td>
<td>IEC 61643-321</td>
</tr>
<tr>
<td>IEC 61643-322</td>
<td>Low-voltage surge protective devices – Part 322: Components for surge protective devices – Performance specification for avalanche breakdown diodes (ABDs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-323</td>
<td>Low-voltage surge protective devices – Part 323: Components for surge protective devices – Selection and applications principles for avalanche breakdown diodes (ABDs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-331</td>
<td>Low-voltage surge protective devices – Part 331: Components for surge protective devices – Test specification for metal oxide varistors (MOVs)</td>
<td>IEC 61643-331</td>
</tr>
<tr>
<td>IEC 61643-332</td>
<td>Low-voltage surge protective devices – Part 332: Components for surge protective devices – Performance specification for metal oxide varistors (MOVs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-333</td>
<td>Low-voltage surge protective devices – Part 333: Components for surge protective devices – Selection and application principles for metal oxide varistors (MOVs)</td>
<td></td>
</tr>
<tr>
<td>IEC 61643-341</td>
<td>Low-voltage surge protective devices – Part 341: Components for surge protective devices – Test specification for thyristor surge suppressors (TSSs)</td>
<td>IEC 61643-341</td>
</tr>
</tbody>
</table>
IEC 61643-342  Low-voltage surge protective devices – Part 342: Components for surge protective devices – Performance specification for thyristor surge suppressors (TSSs)

IEC 61643-343  Low-voltage surge protective devices – Part 343: Components for surge protective devices – Selection and application principles for thyristor surge suppressors (TSSs)

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
0 Introduction

0.1 General

Surge protective devices (SPDs) are used to protect, under specified conditions, electrical systems and equipment against various overvoltages and impulse currents, such as lightning and switching surges.

SPDs shall be selected according to their environmental conditions and the acceptable failure rate of the equipment and the SPDs.

This standard provides information to the user about characteristics useful for the selection of an SPD.

This standard provides information to evaluate, with reference to IEC 62305, Parts 1 to 4 and IEC 60364 series, the need for using SPDs in low-voltage systems. It provides information on selection and co-ordination of SPDs, while taking into account the entire environment in which they are applied. Examples include: equipment to be protected and system characteristics, insulation levels, overvoltages, method of installation, location of SPDs, coordination of SPDs, failure mode of SPDs and equipment failure consequences.

It also provides guidance for performing a risk analysis.

Guidance on requirements for product insulation coordination is provided by IEC 60664 series. Requirements for safety (fire, overcurrent and electric shock) and installation are provided by IEC 60364 series.

The IEC 60364 series of standards provide direct information for contractors on the installation of SPDs. IEC/TR 62066 gives more information on the scientific background of surge protection.

0.2 Keys to understanding the structure of this standard

The list below summarizes the structure of this standard and provides a summary of the information covered in each clause and annex. The main clauses provide basic information on the factors used for SPD selection. Readers who wish to obtain more detail on the information provided in Clauses 4 to 7 should refer to the relevant annexes.

Clause 1 describes the scope of this standard.

Clause 2 lists the normative references where additional information may be found.

Clause 3 provides definitions useful for the comprehension of this standard.

Clause 4 addresses the parameters of systems and equipment relevant to SPDs. In addition to the stresses created by lightning, those created by the network itself, namely temporary overvoltages and switching surges, are described.

Clause 5 lists the electrical parameters used in the selection of an SPD and gives some explanation regarding these parameters. These are related to the data given in IEC 61643-1.

Clause 6 is the core of this standard. It relates the stresses coming from the network (as discussed in Clause 4) to the characteristics of the SPD (as discussed in Clause 5). It outlines how the protection given by SPDs may be affected by its installation. The different steps for the selection of an SPD are presented including the problems of coordination when more than one SPD is used in an installation (details about coordination may be found in Annex F).
Clause 7 is an introduction to the risk analysis (considerations of when the use of SPDs is beneficial).

Clause 8 deals with coordination between signalling and power lines (under consideration).

Annex A deals with information needed for tenders and explains testing procedures used in IEC 61643-1.

Annex B provides examples of the relationship between two important parameters of SPDs, $U_c$ and $U_p$, in the specific case of ZnO varistors and also examples of the relationship between $U_c$ and the nominal voltage of the network.

Annex C supplements the information given in Clause 4 on surge voltages in low-voltage systems.

Annex D deals with the calculation of the sharing of lightning current between different earthing systems.

Annex E deals with calculation of temporary overvoltages due to faults in the high-voltage system.

Annex F supplements the information given in Clause 6 on coordination rules when more than one SPD is used in a system.

Annex G provides specific examples on the use of this standard.

Annex H provides specific examples of the use of the risk analysis.

Annex I supplements the information given in Clause 4 about system stresses.

Annex J supplements the information given in Clause 5 on criteria for selection of SPDs.

Annex K supplements the information given in Clause 6 on the application of SPDs in various low-voltage systems.

Annex L supplements the information given in Clause 7 on the parameters used in risk analysis.

Annex M discusses differences between immunity level and insulation withstand of electrical equipment.

Annex N provides practical examples of SPD installation as used in some countries.

Annex O discusses problems of coordination with equipment having both signalling and power terminals.

Annex P provides information on withstand of fuses in surge conditions.
1 Scope

This part of IEC 61643 describes the principles for selection, operation, location and coordination of SPDs to be connected to 50 Hz to 60 Hz a.c. and to d.c. power circuits and equipment rated up to 1 000 V r.m.s. or 1 500 V d.c.

NOTE 1 Additional requirements may be necessary for special applications such as electrical traction, etc.

NOTE 2 It should be remembered that IEC 60364 series and IEC 62305-4 are also applicable.

NOTE 3 This standard deals only with SPDs and not with SPDs components integrated inside equipment.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1, Lamp caps and holders together with gauges for the control of interchangeability and safety – Part 1: Lamp cap

IEC 60364 (all parts), Low-voltage electrical installations

IEC 60364-4-41, Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60364-4-44, Low voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances


IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60664-1, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 61000-4-5, Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test

IEC 61008-1, Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs) – Part 1: General rules

IEC 61009-1, Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) – Part 1: General rules

IEC 62305-1, Protection against lightning – Part 1: General principles

IEC 62305-2, Protection against lightning – Part 2: Risk management
IEC 62305-3, Protection against lightning – Part 3: Physical damages to structures and life hazard

IEC 62305-4, Protection against lightning – Part 4: Electrical and electronic systems within structures

IEC 61643-1 Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests
SOMMAIRE

AVANT-PROPOS ................................................................................................................ 162
0 Introduction .................................................................................................................. 165
  0.1 Généralités .......................................................................................................... 165
  0.2 Clés pour comprendre la structure de la présente norme ..................................... 165
1 Domaine d'application .............................................................................................. 168
2 Références normatives ............................................................................................... 168
3 Termes, définitions et termes abrégés ........................................................................ 169
  3.1 Termes et définitions ........................................................................................... 169
  3.2 Liste des abréviations et des acronymes utilisés dans la présente norme ............ 181
4 Systèmes et matériels à protéger ................................................................................. 183
  4.1 Réseaux de distribution basse tension ................................................................ 183
    4.1.1 Surtensions et courants de foudre ................................................................ 183
    4.1.2 Surtensions de coupure ........................................................................... 184
    4.1.3 Surtensions temporaires $U_{TOV}$ ............................................................. 184
  4.2 Caractéristiques des matériels à protéger ........................................................... 186
5 Parafoudres .................................................................................................................. 187
  5.1 Fonctions de base des parafoudres ..................................................................... 187
  5.2 Exigences supplémentaires ................................................................................. 187
  5.3 Classification des parafoudres .......................................................................... 187
    5.3.1 Parafoudres: classification ....................................................................... 187
    5.3.2 Conception et topologies courantes ......................................................... 188
  5.4 Caractéristiques des parafoudres ........................................................................ 189
    5.4.1 Conditions de service décrites dans la CEI 61643-1 ................................. 189
    5.4.2 Liste des paramètres pour le choix des parafoudres ................................ 190
  5.5 Informations supplémentaires sur les caractéristiques des parafoudres ............. 191
    5.5.1 Informations liées aux tensions du réseau .............................................. 191
    5.5.2 Informations concernant les courants de choc .......................................... 192
    5.5.3 Informations relatives au niveau de protection en tension fourni par les parafoudres ........................................................................................................ 193
    5.5.4 Informations relatives aux modes de défaillances des parafoudres ............ 195
    5.5.5 Informations relatives à la tenue aux courts-circuits ................................ 196
    5.5.6 Informations relatives au courant de charge $I_L$ et à la chute de tension (pour les parafoudres à deux accès ou à un accès avec bornes d’entrée et de sortie séparées).......................................................... 196
    5.5.7 Informations relatives aux variations des caractéristiques des parafoudres ......................................................................................................................... 196
6 Mise en œuvre des parafoudres dans les réseaux de distribution basse tension ........ 197
  6.1 Installation et son effet sur la protection assurée par les parafoudres ................. 197
    6.1.1 Modes possibles de protection et d’installation ........................................ 197
    6.1.2 Influence des phénomènes d’oscillation sur la distance de protection (appelée distance de séparation dans certains pays) ........................................... 200
    6.1.3 Influence de la longueur des câbles de connexion .................................... 201
    6.1.4 Nécessité d’une protection complémentaire ............................................. 202
    6.1.5 Considération concernant l’emplacement du parafoudre en fonction des classes d’essai.......................................................... 203
    6.1.6 Concept de zone de protection ................................................................. 204
  6.2 Choix du parafoudre ............................................................................................. 205
Annexe D (informative) Calculs de courants de foudre partiels ............................................................ 231
Annexe E (informative) Surtension temporaire dans le réseau basse tension due à des défauts entre réseaux haute tension et terre.......................................................... 234
E.1 Généralités.......................................................... 234
E.2 Exemple d’un schéma TT – Calcul de surtensions temporaires possibles .................................................. 235
   E.2.1 Contraintes possibles sur des matériels dans des installations basse tension
dues à des défauts à la terre dans le réseau haute tension .................................................. 235
E.2.2 Caractéristiques du réseau haute tension.......................................................... 236
E.2.3 Surtensions temporaires dans un réseau basse tension dues à des défauts
du réseau haute tension .......................................................................................... 236
E.2.4 Conclusions .......................................................................................... 237
E.3 Valeurs des surtensions temporaires selon la CEI 60364-4-44 .......................................................... 237
E.4 Valeurs des surtensions temporaires pour le schéma C-S des USA .................................................. 247
Annexe F (informative) Règles et principes de coordination ........................................................................ 249
F.1 Généralités .......................................................................................... 249
F.2 Études analytiques: cas simple de la coordination de deux parafoudres à
des varistances ZnO ...................................................................................... 249
   F.2.1 Généralités .......................................................................................... 249
   F.2.2 Conclusion .......................................................................................... 252
F.3 Étude analytique: cas de la coordination entre un parafoudre à éclateur et un
des varistances ZnO ...................................................................................... 253
   F.3.1 Généralités .......................................................................................... 253
   F.3.2 Exemple de calcul des valeurs requises estimées pour une inductance de
découplage entre un éclateur et une varistance ................................................................ 253
   F.3.3 Conclusion .......................................................................................... 255
F.4 Étude analytique: coordination générale de deux parafoudres .......................................................... 255
F.5 Méthode d’énergie de non-fonctionnement (LTE) .................................................................................. 256
   F.5.1 Généralités .......................................................................................... 256
   F.5.2 Méthode .............................................................................................. 257
Annexe G (informative) Exemples d’utilisation .................................................................................. 260
G.1 Utilisation domestique .................................................................................................................. 260
G.2 Utilisation industrielle .................................................................................................................. 262
G.3 Présence d’un système de protection contre la foudre ........................................................................ 267
Annexe H (informative) Exemples d’application de l’analyse des risques .................................................. 269
Annexe I (informative) Contraintes de réseaux .................................................................................. 273
I.1 Courants et surtensions de foudre [4.1.1] .......................................................................................... 273
   I.1.1 Aspects des réseaux de distribution ayant un effet sur la nécessité d’un
   parafoudre .................................................................................................................. 273
   I.1.2 Partage du courant de choc dans une structure ................................................................ 273
I.2 Surtensions de coupure [4.1.2] ........................................................................................................ 275
I.3 Surtensions temporaires $U_{TOV}$ [4.1.3] .................................................................................. 275
Annexe J (informative) Critères de sélection des parafoudres .................................................................. 277
J.1 Caractéristique de la surtension temporaire $U_T$ [5.5.1.2] ................................................................ 277
J.2 Modes de défaillance des parafoudres [5.5.4] .................................................................................. 277
Annexe K (informative) Utilisation des parafoudres .................................................................................. 280
K.1 Emplacement et protection apportés par les parafoudres [6.1] .......................................................... 280
   K.1.1 Modes possibles de protection et d’installation [6.1.1] .......................................................... 280
Figure E.1 – Surtension temporaire à fréquence industrielle due à un défaut à la terre du réseau haute tension ..................................................................................................... 235
Figure E.2 – Schémas TN ................................................................................................... 238
Figure E.3 – Schémas TT ................................................................................................... 239
Figure E.4 – Schéma IT, exemple a .................................................................................... 240
Figure E.5 – Schéma IT, exemple b .................................................................................... 241
Figure E.6 – Schéma IT, exemple c1 .................................................................................. 242
Figure E.7 – Schéma IT, exemple c2 .................................................................................. 243
Figure E.8 – Schéma IT, exemple d .................................................................................... 244
Figure E.9 – Schéma IT, exemple e1 .................................................................................. 245
Figure E.10 – Schéma IT, exemple e2 ................................................................................. 246
Figure E.11 – Schéma TN-C-S des USA ............................................................................. 247
Figure F.1 – Deux varistances ZnO ayant le même courant nominal de décharge ............... 250
Figure F.2 – Deux varistances ZnO avec des courants nominaux de décharge différents ............................................................................................................................ 252
Figure F.3 – Exemple de coordination d’un parafoudre à éclateur et d’un parafoudre à varistance ZnO ........................................................................................................................................ 255
Figure F.4 – LTE – Méthode de coordination avec les paramètres d’une impulsion normale ........................................................................................................................................ 256
Figure G.1 – Installation domestique................................................................................... 262
Figure G.2 – Installation industrielle.................................................................................... 265
Figure G.3 – Circuits de l’installation industrielle................................................................ 266
Figure G.4 – Exemple de système de protection contre la foudre ........................................ 268
Figure I.1 – Exemple d’écoulement du courant de foudre dans les raccordements externes de service (schéma TT) ....................................................................................... 274
Figure J.1 – Courbe caractéristique pour $U_T$ d’un parafoudre ........................................ 277
Figure J.2 – Déconnecteur interne dans le cas d’un parafoudre à deux accès ..................... 278
Figure J.3 – Utilisation de parafoudres montés en parallèle ................................................. 279
Figure K.1 – Installation de parafoudres dans des réseaux TN ............................................. 281
Figure K.2a – Connexion de type 1 .................................................................................... 282
Figure K.2b – Connexion de type 2 .................................................................................... 283
Figure K.2 – Installation de parafoudres dans des schémas TT (parafoudre placé en aval du DDR) ........................................................................................................................................ 283
Figure K.3 – Installation de parafoudres dans des schémas TT (parafoudre placé en amont du DDR) ........................................................................................................................................ 284
Figure K.4 – Installation de parafoudres dans des schémas IT sans neutre distribué .......... 285
Figure K.5 – Installation caractéristique de parafoudres à l’entrée d’une installation dans le cas d’un schéma TN C-S ........................................................................................................ 286
Figure K.6 – Façon générale d’installation de parafoudres à un accès ................................ 287
Figure K.7 – Exemples d’installations acceptables et non acceptables de parafoudres vis-à-vis de la CEM ........................................................................................................... 288
Figure K.8 – Représentations physique et électrique d’un réseau où le matériel protégé est séparé de la protection apportée par le parafoudre ......................................................... 289
Figure K.9 – Oscillation possible entre un parafoudre à oxyde de zinc et le matériel à protéger ............................................................................................................................ 290
Figure K.10 – Exemple de doublement de tension ............................................................... 290
Figure K.11 – Subdivision d’un bâtiment en zones de protection ......................................... 291
Figure K.12a – Tension résiduelle sur les varistances......................................................... 294
Figure K.12b – Répartition du courant entre deux varistances............................................. 295
Figure K.12 – Coordination de deux varistances ZnO......................................................... 295
Figure N.1 – Schéma de câblage d’un parafoudre relié du côté charge de l’isolateur 
 d’arrivée principal par l’intermédiaire d’un isolateur séparé (qui pourrait être inclus dans 
l’enveloppe du parafoudre) .......................................................................................... 302
Figure N.2 – Parafoudre relié au disjoncteur principal à l’arrivée disponible le plus 
 proche de l’alimentation d’entrée (installation TNS généralement rencontrée au 
 Royaume-Uni) ............................................................................................................ 303
Figure N.3 – Schéma de câblage monophasé d’un parafoudre relié en dérivation sur la 
 première sortie du tableau de distribution par l’intermédiaire d’un fusible (ou 
 disjoncteur principal) .................................................................................................. 304
Figure N.4 – Parafoudre relié au disjoncteur disponible le plus proche sur l’alimentation 
 d’entrée (installation TN-C-S, 4W + G triphasée rencontrée aux Etats-Unis) .......... 305
Figure N.5 – Parafoudre relié au disjoncteur disponible le plus proche sur 
l’alimentation d’entrée (réseau 120/240V, 3W + G monophasé (phases séparées) 
 rencontré aux Etats-Unis – typique pour les applications résidentielles et des petites 
 entreprises) .................................................................................................................. 306
Figure O.1 – Exemple d’ordinateur avec modem dans un réseau de puissance et de 
 communication rencontré aux Etats-Unis ................................................................. 308
Figure O.2 – Schéma du circuit de la Figure O.1 utilisé pour les essais expérimentaux ...... 309
Figure O.3 – Tension enregistrée aux points de référence pour l’ordinateur/le modem 
 au cours d’une onde de choc dans l’exemple .............................................................. 310
Figure O.4 – Schéma TT typique utilisé pour les simulations .............................................. 311
Figure O.5 – Formes d’ondes de tension et de courant lorsqu’un parafoudre 
multifonction est appliqué au circuit de la Figure O.1 .................................................. 313

Tableau 1 – Valeurs maximales des surtensions temporaires figurant dans la 
CEI 60634-4-44 ........................................................................................................... 185
Tableau 2 – Valeurs préférentielles de \( I_{imp} \) .................................................................... 193
Tableau 3 – Modes possibles de protection pour différents réseaux BT ......................... 200
Tableau 4 – Valeur de \( U_c \) minimale recommandée du parafoudre pour les différents 
 réseaux d’alimentation ............................................................................................... 206
Tableau 5 – Valeurs d’essai de surtension temporaire types ........................................... 207
Tableau B.1 – Relation entre \( U_C \) et la tension nominale du réseau ................................. 222
Tableau B.2 – Relation entre \( U_p \) et \( U_C \) pour des varistances ZnO ......................... 223
Tableau F.1 – ................................................................................................................... 258
Tableau F.2 – ................................................................................................................... 258
Tableau F.3 – ................................................................................................................... 258
Tableau O.1 – Résultats de simulation ............................................................................. 312
Tableau P.1 – Exemples de rapport entre la tenue à une onde de choc et l’ensemble 
de l’essai de préconditionnement/fonctionnement .................................................... 316
PARAFOUDRES BASSE TENSION –
Partie 12: Parafoudres connectés
aux réseaux de distribution basse tension –
Principes de choix et d’application

AVANT-PROPOS

1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l’ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l’électricité et de l’électronique. A cet effet, la CEI – entre autres activités – publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d’études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l’Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organismes.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d’études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s’assure de l’exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d’encourager l’uniformité internationale, les Comités nationaux de la CEI s’engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) La CEI n’a prévu aucune procédure de marquage valant indication d’approbation et n’engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 61643-12 a été établie par le sous-comité 37A: Dispositifs de protection basse tension contre les surtensions, du comité d’études 37 de la CEI: Parafoudres.

Cette deuxième édition de la CEI 61643-12 annule et remplace la première édition parue en 2002. Elle constitue une révision technique. Le changement spécifique par rapport à l’édition précédente est l’intégration de l’Amendement 1, qui n’a pas été publié séparément en raison du nombre important de modifications et de pages.

La présente norme doit être utilisée conjointement avec la CEI 61643-1:2005, Parafoudres basse tension – Partie 1: Parafoudres connectés aux réseaux de distribution basse tension – Exigences et essais.
Le texte de cette norme est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>37A/209/FDIS</td>
<td>37A/212/RVD</td>
</tr>
</tbody>
</table>

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 3.

Les CE 37, SC 37A et SC 37B de la CEI ont adopté un nouveau plan de numérotation de toutes les publications CEI qu’ils ont développées.

Dans la présente norme, la série de publications CEI 61643 couvre toutes les publications des SC 37A et SC 37B, selon le tableau ci-dessous, sous le titre général commun *Parafoudres basse tension*.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Titre</th>
<th>Document actuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI 61643</td>
<td>Parafoudres basse tension</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-11</td>
<td>Parafoudres basse tension – Partie 11: Parafoudres connectés aux réseaux de distribution basse tension – Exigences de fonctionnement et méthodes d’essais</td>
<td>CEI 61643-1</td>
</tr>
<tr>
<td>CEI 61643-12</td>
<td>Parafoudres basse tension – Partie 12: Parafoudres connectés aux réseaux de distribution basse tension – Principes de choix et d’application</td>
<td>CEI 61643-12</td>
</tr>
<tr>
<td>CEI 61643-21</td>
<td>Parafoudres basse tension – Partie 21: Parafoudres connectés aux réseaux de signaux et de télécommunications – Exigences de fonctionnement et méthodes d’essais</td>
<td>CEI 61643-21</td>
</tr>
<tr>
<td>CEI 61643-22</td>
<td>Parafoudres basse tension – Partie 22: Parafoudres connectés aux réseaux de signaux et de télécommunications – Principes de choix et d’application</td>
<td>CEI 61643-22</td>
</tr>
<tr>
<td>CEI 61643-301</td>
<td>Parafoudres basse tension – Partie 301: Composants pour parafoudres – Spécifications générales d’essais</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-302</td>
<td>Parafoudres basse tension – Partie 302: Composants pour parafoudres – Spécifications générales de performances</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-303</td>
<td>Parafoudres basse tension – Partie 303: Composants pour parafoudres – Principes généraux de choix et d’application</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-311</td>
<td>Parafoudres basse tension – Partie 311: Composants pour parafoudres – Spécifications d’essais pour les tubes à décharge (GDTs)</td>
<td>CEI 61643-311</td>
</tr>
<tr>
<td>CEI 61643-312</td>
<td>Parafoudres basse tension – Composants pour parafoudres – Partie 312: Spécifications de performance pour les tubes à décharge (GDTs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-313</td>
<td>Parafoudres basse tension – Partie 313: Composants pour parafoudres – Principes de choix et d’application pour les tubes à décharge (GDTs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-321</td>
<td>Parafoudres basse tension – Partie 321: Composants pour parafoudres – Spécifications d’essais pour les diodes à avalanche (ABDs)</td>
<td>CEI 61643-321</td>
</tr>
<tr>
<td>CEI 61643-322</td>
<td>Parafoudres basse tension – Partie 322: Composants pour parafoudres – Spécifications de performance pour les diodes à avalanche (ABDs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-323</td>
<td>Parafoudres basse tension – Partie 323: Composants pour parafoudres – Principes de choix et d’application pour les diodes à avalanche (ABDs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-331</td>
<td>Parafoudres basse tension – Partie 331: Composants pour parafoudres – Spécifications d’essais pour les varistances à oxyde métallique (MOVs)</td>
<td>CEI 61643-331</td>
</tr>
<tr>
<td>CEI 61643-332</td>
<td>Parafoudres basse tension – Partie 332: Composants pour parafoudres – Spécifications de performance pour les varistances à oxyde métallique (MOVs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-333</td>
<td>Parafoudres basse tension – Partie 333: Composants pour parafoudres – Principes de choix et d’application pour les varistances à oxyde métallique (MOVs)</td>
<td>–</td>
</tr>
<tr>
<td>CEI 61643-341</td>
<td>Parafoudres basse tension – Partie 341: Composants pour parafoudres – Spécifications d’essais pour les parafoudres à thyristor</td>
<td>CEI 61643-341</td>
</tr>
<tr>
<td>CEI 61643-342</td>
<td>Parafoudres basse tension – Partie 342: Composants pour parafoudres – Spécifications de performance pour les parafoudres à thyristor</td>
<td>–</td>
</tr>
</tbody>
</table>
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.
0 Introduction

0.1 Généralités

Les parafoudres sont utilisés pour protéger, dans des conditions spécifiques, les systèmes et appareils électriques contre les variations des surtensions et courants de choc, telles que les surtensions dues à la foudre et les surtensions de coupure.

Les parafoudres doivent être choisis selon leur exposition et le taux acceptable de défaillance du matériel et des parafoudres.

La présente norme fournit des informations à l'utilisateur sur les caractéristiques utiles pour choisir un parafoudre.

La présente norme fournit des informations pour évaluer, par rapport à la CEI 62305, Parties 1 à 4 et à la série CEI 60364, la nécessité d’utiliser des parafoudres dans des réseaux basse tension. Elle fournit des informations concernant le choix et la coordination des parafoudres, tout en tenant compte de l’environnement global dans lequel ils sont mis en œuvre. Exemples: matériel à protéger, caractéristiques du système, niveaux d’isolation, surtensions, méthode d’installation, emplacement des parafoudres, coordination des parafoudres, mode de défaillance des parafoudres et conséquences des défaillances pour les matériels.

Elle donne également des indications sur l’analyse du risque.

Des indications sur les exigences de coordination de l'isolement des produits sont données dans la CEI 60664. Des exigences de sécurité (incendie, surintensités et chocs électriques) et d'installation sont données dans la série CEI 60364.

Les publications de la série CEI 60364 donnent des informations directes aux installateurs pour l'installation des parafoudres. La CEI/TR 62066 donne plus d'informations sur l'arrière-plan scientifique de la protection contre les chocs de foudre.

0.2 Clés pour comprendre la structure de la présente norme

La liste ci-dessous résume la structure de la présente norme et les informations données dans les articles et les annexes. Les articles principaux fournissent des informations de base sur les facteurs utilisés pour le choix des parafoudres. Il est conseillé aux lecteurs souhaitant obtenir plus de détails sur les renseignements fournis aux Articles 4 à 7 de se référer aux annexes appropriées.

L'Article 1 décrit le domaine d'application de la présente norme.

L'Article 2 donne les références normatives dans lesquelles des informations complémentaires peuvent être trouvées.

L'Article 3 donne les définitions utiles pour la compréhension de la présente norme.

L'Article 4 traite des paramètres des systèmes et des matériels applicables aux parafoudres. En plus des contraintes dues à la foudre, celles créées par le réseau lui-même, à savoir les surtensions temporaires et les surtensions de coupure, sont décrites.

L'Article 5 liste les paramètres électriques utilisés pour la sélection d'un parafoudre et donne quelques explications concernant ces paramètres. Ceux-ci sont en relation avec les données de la CEI 61643-1.
L’Article 6 est l’article principal de cette norme. Il compare les contraintes provenant du réseau (Article 4) et les caractéristiques du parafoudre (Article 5). Il indique comment la protection donnée par les parafoudres peut être affectée par son installation. Les différentes étapes dans le choix d’un parafoudre sont présentées, incluant les problèmes de coordination lorsque plus d’un parafoudre est utilisé dans une installation (des détails sur la coordination peuvent être trouvés en Annexe F).

L’Article 7 est une introduction à l’analyse du risque (considérations sur l’utilité d’utiliser un parafoudre).

L’Article 8 traite de la coordination entre les lignes de télécommunication et de puissance. Cet article est à l’étude.

L’Annexe A donne des informations nécessaires sur les appels d’offre et des explications sur les procédures d’essai utilisées dans la CEI 61643-1.

L’Annexe B donne des exemples de relation entre les deux paramètres importants des parafoudres, $U_c$ et $U_p$, dans le cas spécifique des varistances ZnO et aussi de la relation entre $U_c$ et la tension nominale du réseau.

L’Annexe C complète les informations données à l’Article 4 sur les tensions de choc dans les réseaux basse tension.

L’Annexe D traite des calculs du partage des courants de foudre entre les différents systèmes de mise à la terre.

L’Annexe E traite des calculs des surtensions temporaires dues à des défauts dans le réseau haute tension.

L’Annexe F complète les informations données à l’Article 6 sur les règles de coordination lorsque plus d’un parafoudre est utilisé dans un réseau.

L’Annexe G présente des exemples spécifiques d’application de cette norme.

L’Annexe H présente des exemples spécifiques de l’utilisation de l’analyse du risque.

L’Annexe I complète les informations données à l’Article 4 sur les contraintes du réseau.

L’Annexe J complète les informations données à l’Article 5 sur les critères de choix des parafoudres.

L’Annexe K complète les informations données à l’Article 6 sur l’utilisation des parafoudres dans différents réseaux basse tension.

L’Annexe L complète les informations données à l’Article 7 sur les paramètres utilisés dans les analyses du risque.

L’Annexe M traite des différences entre le niveau d’immunité et la tenue à l’isolement des appareils électriques.

L’Annexe N donne des exemples pratiques d’une installation de parafoudre telle qu’elle est utilisée dans certains pays.

L’Annexe O traite des problèmes de coordination avec un matériel présentant à la fois des bornes de télécommunication et de puissance.
L'Annexe P donne des informations sur la tenue des fusibles dans des conditions de surtension.
PARAFOUĐRES BASSE TENSION –

Partie 12: Parafoudres connectés aux réseaux de distribution basse tension – Principes de choix et d'application

1 Domaine d'application

La présente partie de la CEI 61643 décrit les principes relatifs au choix, à la mise en œuvre, à l'emplacement et à la coordination des parafoudres à connecter sur des circuits de puissance 50 Hz à 60 Hz en courant alternatif et des circuits en courant continu, et des matériels de puissance allant jusqu'à 1 000 V en valeur efficace ou 1 500 V en courant continu.

NOTE 1 Des exigences complémentaires peuvent être nécessaires pour des applications particulières telles que traction électrique, etc.

NOTE 2 Il convient de rappeler que la série CEI 60364 et la CEI 62305-4 s'appliquent également.

NOTE 3 La présente norme traite seulement des parafoudres et non des composants de parafoudres intégrés dans un matériau.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60061-1, Lamp caps and holders together with gauges for the control of interchangeability and safety – Part 1: Lamp caps (disponible en anglais seulement)

CEI 60364 (toutes les parties), Installations électriques à basse tension

CEI 60364-4-41, Installations électriques à basse tension – Partie 4-41: Protection pour assurer la sécurité – Protection contre les chocs électriques

CEI 60364-4-44, Installations électriques à basse tension – Partie 4-44: Protection pour assurer la sécurité – Protection contre les perturbations de tension et les perturbations électromagnétiques


CEI 60529, Degrés de protection procurés par les enveloppes (Code IP)

CEI 60664-1, Coordination de l'isolement des matériels dans les systèmes (réseaux) à basse tension – Partie 1: Principes, exigences et essais

CEI 61000-4-5, Compatibilité électromagnétique (CEM) – Partie 4-5: Techniques d'essai et de mesure – Essai d'immunité aux ondes de choc
CEI 61008-1, Interrupteurs automatiques à courant différentiel résiduel pour usages domestiques et analogues sans dispositif de protection contre les surintensités incorporé (ID) – Partie 1: Règles générales

CEI 61009-1, Interrupteurs automatiques à courant différentiel résiduel avec protection contre les surintensités incorporée pour installations domestiques et analogues (DD) – Partie 1: Règles générales

CEI 62305-1, Protection contre la foudre – Partie 1: Principes généraux

CEI 62305-2, Protection contre la foudre – Partie 2: Evaluation des risques

CEI 62305-3, Protection contre la foudre – Partie 3: Dommages physiques sur les structures et risques humains

CEI 62305-4, Protection contre la foudre – Partie 4: Réseaux de puissance et de communication dans les structures

CEI 61643-1, Parafoudres basse tension – Partie 1: Parafoudres connectés aux réseaux de distribution basse tension – Exigences et essais