Communication networks and systems for power utility automation – Part 4: System and project management

Réseaux et systèmes de communication pour l'automatisation des systèmes électriques – Partie 4: Gestion du système et gestion de projet
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>4</td>
</tr>
<tr>
<td>1 Scope</td>
<td>6</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>6</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>7</td>
</tr>
<tr>
<td>4 Abbreviations</td>
<td>10</td>
</tr>
<tr>
<td>5 Engineering requirements</td>
<td>11</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>11</td>
</tr>
<tr>
<td>5.2 Categories and types of parameters</td>
<td>12</td>
</tr>
<tr>
<td>5.2.1 Classification</td>
<td>12</td>
</tr>
<tr>
<td>5.2.2 Parameter categories</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3 Parameter types</td>
<td>14</td>
</tr>
<tr>
<td>5.3 Engineering tools</td>
<td>15</td>
</tr>
<tr>
<td>5.3.1 Engineering process</td>
<td>15</td>
</tr>
<tr>
<td>5.3.2 System specification tool</td>
<td>17</td>
</tr>
<tr>
<td>5.3.3 System configuration tool</td>
<td>17</td>
</tr>
<tr>
<td>5.3.4 IED configuration tool</td>
<td>18</td>
</tr>
<tr>
<td>5.3.5 Documentation tool</td>
<td>19</td>
</tr>
<tr>
<td>5.4 Flexibility and expandability</td>
<td>19</td>
</tr>
<tr>
<td>5.5 Scalability</td>
<td>20</td>
</tr>
<tr>
<td>5.6 Automatic project documentation</td>
<td>20</td>
</tr>
<tr>
<td>5.6.1 General</td>
<td>20</td>
</tr>
<tr>
<td>5.6.2 Hardware documentation</td>
<td>22</td>
</tr>
<tr>
<td>5.6.3 Parameter documentation</td>
<td>22</td>
</tr>
<tr>
<td>5.6.4 Requirements of the documentation tool</td>
<td>23</td>
</tr>
<tr>
<td>5.7 Standard documentation</td>
<td>23</td>
</tr>
<tr>
<td>5.8 System integrator's support</td>
<td>24</td>
</tr>
<tr>
<td>6 System life cycle</td>
<td>24</td>
</tr>
<tr>
<td>6.1 Requirements of product versions</td>
<td>24</td>
</tr>
<tr>
<td>6.2 Announcement of product discontinuation</td>
<td>26</td>
</tr>
<tr>
<td>6.3 Support after discontinuation</td>
<td>26</td>
</tr>
<tr>
<td>7 Quality assurance</td>
<td>27</td>
</tr>
<tr>
<td>7.1 Division of responsibility</td>
<td>27</td>
</tr>
<tr>
<td>7.1.1 General</td>
<td>27</td>
</tr>
<tr>
<td>7.1.2 Responsibility of the manufacturer and system integrator</td>
<td>27</td>
</tr>
<tr>
<td>7.1.3 Responsibility of the customer</td>
<td>29</td>
</tr>
<tr>
<td>7.2 Test equipment</td>
<td>29</td>
</tr>
<tr>
<td>7.2.1 General</td>
<td>29</td>
</tr>
<tr>
<td>7.2.2 Normal process test equipment</td>
<td>29</td>
</tr>
<tr>
<td>7.2.3 Transient and fault test equipment</td>
<td>29</td>
</tr>
<tr>
<td>7.2.4 Communication test equipment</td>
<td>30</td>
</tr>
<tr>
<td>7.3 Classification of quality tests</td>
<td>30</td>
</tr>
<tr>
<td>7.3.1 Basic test requirements</td>
<td>30</td>
</tr>
<tr>
<td>7.3.2 System test</td>
<td>30</td>
</tr>
<tr>
<td>7.3.3 Type test</td>
<td>31</td>
</tr>
<tr>
<td>7.3.4 Routine test</td>
<td>32</td>
</tr>
<tr>
<td>7.3.5 Conformance test</td>
<td>32</td>
</tr>
</tbody>
</table>
7.3.6 Factory Acceptance Test (FAT) ... 32
7.3.7 Site Acceptance Test (SAT) .. 32
Annex A (informative) Announcement of discontinuation (example) 34
Annex B (informative) Delivery obligations after discontinuation (example) 35
Bibliography ... 36

Figure 1 – Structure of the UAS and its environment ... 11
Figure 2 – Structure of UAS and IED parameters .. 13
Figure 3 – Engineering tasks and their relationship .. 16
Figure 4 – IED configuration process ... 18
Figure 5 – Project related documentation of UAS ... 21
Figure 6 – Two meanings of the system life cycle ... 25
Figure 7 – Stages of quality assurance – Responsibility of manufacturer and system integrator .. 27
Figure 8 – Contents of system test ... 30
Figure 9 – Contents of type test ... 31
Figure 10 – Contents of routine test .. 32
Figure 11 – Testing stages for site acceptance test ... 33
Figure A.1 – Announcement conditions .. 34
Figure B.1 – Periods for delivery obligations ... 35
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61850-4 has been prepared by IEC technical committee 57: Power systems management and associated information exchange.

This second edition cancels and replaces the first edition published in 2002. It constitutes a technical revision to align the document more closely with the other parts of the IEC 61850 series, in addition to enlarging the scope from substation automation systems to all utility automation systems.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/1103/FDIS</td>
<td>57/1122/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61850 series, under the general title: *Communication networks and systems for power utility automation*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
1 Scope

This part of IEC 61850 applies to projects associated with process near automation systems of power utilities (UAS, utility automation system), like e.g. substation automation systems (SAS). It defines the system and project management for UAS systems with communication between intelligent electronic devices (IEDs) in the substation respective plant and the related system requirements.

The specifications of this part pertain to the system and project management with respect to:

- the engineering process and its supporting tools;
- the life cycle of the overall system and its IEDs;
- the quality assurance beginning with the development stage and ending with discontinuation and decommissioning of the UAS and its IEDs.

The requirements of the system and project management process and of special supporting tools for engineering and testing are described.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60848, GRAFCET specification language for sequential function charts

IEC 61082 (all parts), Preparation of documents used in electrotechnology

IEC 61175, Industrial systems, installations and equipment and industrial products – Designation of signals

IEC 61850-6, Communication networks and systems for power utility automation – Part 6: Configuration description language for communication in electrical substations related to IEDs

IEC 61850-7 (all parts), Communication networks and systems for power utility automation – Part 7: Basic communication structure

IEC 81346 (all parts), Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations

IEC 81346-1, Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 1: Basic rules

IEC 81346-2, Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 2: Classification of objects and codes for classes
SOMMAIRE

AVANT-PROPOS .. 40

1 Domaine d’application .. 42

2 Références normatives ... 42

3 Termes et définitions ... 43

4 Abréviations .. 47

5 Exigences liées à l’étude ... 47

5.1 Vue d’ensemble .. 47

5.2 Catégories et types de paramètres ... 49

5.2.1 Classification .. 49

5.2.2 Catégories de paramètres ... 50

5.2.3 Types de paramètres .. 51

5.3 Les outils d’étude ... 52

5.3.1 Le processus d’étude .. 52

5.3.2 Outils de spécification du système .. 55

5.3.3 Outils de configuration du système .. 55

5.3.4 Outil de configuration de l’IED ... 55

5.3.5 L’outil de documentation ... 57

5.4 Flexibilité et extensibilité ... 57

5.5 Evolutivité ... 58

5.6 Documentation de projet automatique .. 58

5.6.1 Généralités .. 58

5.6.2 Documentation du matériel .. 59

5.6.3 Documentation des paramètres .. 59

5.6.4 Exigences liées à l’outil de documentation ... 61

5.7 Documentation standard .. 61

5.8 Support de l’intégrateur système ... 62

6 Cycle de vie du système .. 62

6.1 Exigences liées aux versions des produits ... 62

6.2 Annonce de l’arrêt de fabrication du produit .. 63

6.3 Support après l’arrêt de fabrication .. 64

7 Assurance de la qualité .. 64

7.1 Répartition des responsabilités ... 64

7.1.1 Généralités .. 64

7.1.2 Responsabilités du constructeur et de l’intégrateur système 64

7.1.3 Responsabilités du client .. 66

7.2 Equipement d’essai ... 67

7.2.1 Généralités .. 67

7.2.2 Equipement d’essai de procédé normal ... 67

7.2.3 Equipement d’essai de transitoires et de défauts .. 67

7.2.4 Equipement d’essai de la communication ... 67

7.3 Classification des essais de qualité ... 68

7.3.1 Exigences d’essai de base .. 68

7.3.2 Essai système .. 68

7.3.3 Essai de type .. 68

7.3.4 Essai individuel de série .. 69

7.3.5 Essai de conformité ... 70
7.3.6 Essai de réception usine (ERU) ... 70
7.3.7 Essai de réception sur site (ERS) .. 70
Annexe A (informative) Annonce de l’arrêt de la fabrication (exemple) 72
Annexe B (informative) Obligations de livraison après l’arrêt de la fabrication (exemple) ... 73
Bibliographie ... 74

Figure 1 – Structure de l’UAS et de son environnement .. 48
Figure 2 – Structure des paramètres UAS et IED .. 50
Figure 3 – Les tâches d’étude et leurs relations ... 54
Figure 4 – Processus de configuration de l’IED ... 56
Figure 5 – Documentation de projet de l’UAS ... 58
Figure 6 – Deux significations du cycle de vie du système 62
Figure 7 – Étapes de l’assurance qualité – Responsabilité du constructeur et de l’intégrateur système ... 65
Figure 8 – Contenu de l’essai du système ... 68
Figure 9 – Contenu de l’essai de type .. 69
Figure 10 – Contenu de l’essai individuel de série ... 69
Figure 11 – Les étapes d’essai de l’essai de réception sur site 70
Figure A.1 – Conditions d’annonce ... 72
Figure B.1 – Périodes des obligations de livraison ... 73
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

RÉSEAUX ET SYSTÈMES DE COMMUNICATION POUR L'AUTOMATISATION DES SYSTÈMES ÉLECTRIQUES –

Partie 4: Gestion du système et gestion de projet

AVANT-PROPOS

1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l’ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l’électricité et de l’électronique. À cet effet, la CEI – entre autres activités – publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d’études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l’Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d’études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s’assure de l’exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d’encourager l’unicité internationale, tous les Comités nationaux de la CEI s’engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l’objet de droits de brevet. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale CEI 61850-4 a été établie par le comité d’études 57 de la CEI: Gestion des systèmes de puissance et échanges d'informations associés.

La présente seconde édition annule et remplace la première édition parue en 2002. Elle constitue une révision technique avec des détails plus proches des autres parties de la série de Normes CEI 61850. Le domaine d’application porte non seulement sur les systèmes d’automatisation de poste, mais aussi sur tous les systèmes d’automatisation pour les compagnies d’électricité.
Le texte de la présente Norme est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/1103/FDIS</td>
<td>57/1122/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l’approbation de la présente Norme.

La présente publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 61850, publiée sous le titre général Réseaux et systèmes de communication pour l’automatisation des systèmes électriques est disponible sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.
RÉSEAUX ET SYSTÈMES DE COMMUNICATION POUR L'AUTOMATISATION DES SYSTÈMES ÉLECTRIQUES –

Partie 4: Gestion du système et gestion de projet

1 Domaine d'application

La présente partie de la CEI 61850 s'applique à des projets associés aux procédés proches des systèmes d'automatisation des compagnies d'électricité (UAS)\(^1\), par exemple les systèmes d'automatisation de poste (SAS)\(^2\). Elle définit la gestion du système et la gestion de projet pour les systèmes UAS avec communication entre des dispositifs électroniques intelligents (IED)\(^3\) dans le poste ou le site ainsi que les exigences concernant les systèmes associés.

Les spécifications contenues dans cette partie se rapportent à la gestion du système et à la gestion de projet en ce qui concerne:

- le processus d'étude et les outils de support associés;
- le cycle de vie du système global et de ses IED;
- l'assurance qualité, de l'étape de développement jusqu'à l'arrêt de fabrication et la mise hors service de l’UAS et de ses IED.

Les exigences du processus de gestion du système et de gestion de projet ainsi que celles des outils de support spécifiques pour l'étude et les essais sont décrites.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60848, Langage de spécification GRAFCET pour diagrammes fonctionnels en séquence

CEI 61082 (toutes les parties), Etablissement des documents utilisés en électricité

CEI 61175, Systèmes, installations, appareils et produits industriels – Désignation des signaux

CEI 61850-6, Communication networks and systems for power utility automation – Part 6: Configuration description language for communication in electrical substations related to IEDs (disponible en anglais seulement)

CEI 61850-7 (toutes les parties), Communication networks and systems for power utility automation – Part 7: Basic communication structure (disponible en anglais seulement)

\(^1\) UAS = Utility Automation System.

\(^2\) SAS = Substation Automation System.

\(^3\) IED = Intelligent Electronic Device.
3 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s’appliquent.

3.1 outils de support

outils qui servent de support à l’utilisateur dans l’étude, l’exploitation et la gestion du UAS et de ses IED

NOTE En général, les outils de support font partie de l’UAS.

3.1.1 outils d’étude

outils qui permettent la création et la documentation des conditions nécessaires pour adapter un système d’automatisation aux exigences spécifiques du site (poste) et du client

NOTE Les outils d’étude se répartissent en outils de gestion de projet, outils de configuration et outils de documentation.

3.1.2 outils de spécification du système

outils utilisés pour créer une spécification des exigences du système incluant la relation des fonctions du système dans le site ou le poste à gérer ; il s’agit en particulier d’un outil qui crée une spécification dans un format normalisé et défini de manière formelle pouvant être évaluée par d’autres outils.

3.1.3 outils de configuration du système

outils prenant en charge les communications entre les IED dans le système, la configuration de problèmes communs à plusieurs IED et l’association logique des fonctions des IED dans le procédé à commander et à surveiller.

NOTE Voir également «paramètres du système».

3.1.4 outils de configuration de l’IED

outils prenant en charge la configuration spécifique et le téléchargement des données de configuration pour un IED spécifique d’un type spécifique.

3.2 extensibilité

critère qui caractérise la capacité d’extension efficace d’un système d’automatisation (matériel et fonctionnel) à l’aide des outils d’étude.

3.3 flexibilité

critère qui caractérise la mise en œuvre rapide et efficace de modifications fonctionnelles, y compris celles du matériel.