Railway applications – Rolling stock equipment – Capacitors for power electronics –
Part 3: Electric double-layer capacitors

Applications ferroviaires – Matériel roulant – Condensateurs pour électronique de puissance –
Partie 3: Condensateurs électriques à double couche
REDLINE VERSION

VERSION REDLINE

Railway applications – Rolling stock equipment – Capacitors for power electronics –
Part 3: Electric double-layer capacitors

Applications ferroviaires – Matériel roulant – Condensateurs pour électronique de puissance –
Partie 3: Condensateurs électriques à double couche
CONTENTS

FOREWORD

1. **Scope** ... 7
2. **Normative references** .. 7
3. **Terms and definitions** ... 8
4. **Service conditions** ... 10
 4.1 **Normal service conditions** 10
 4.1.1 General ... 10
 4.1.2 Altitude .. 11
 4.1.3 Temperature ... 11
 4.2 **Unusual service conditions** 11
5. **Quality requirements and tests** 11
 5.1 **Test requirements** ... 11
 5.1.1 General ... 11
 5.1.2 Test conditions .. 11
 5.1.3 Measurement conditions 12
 5.1.4 Voltage treatment .. 12
 5.1.5 Thermal treatment 12
 5.2 **Classification of tests** .. 12
 5.2.1 General ... 12
 5.2.2 Type tests .. 13
 5.2.3 Routine tests ... 13
 5.2.4 Acceptance tests .. 13
 5.3 **Capacitance and internal resistance** 13
 5.3.1 Measurement procedure for capacitance and internal resistance 13
 5.3.2 Calculation methods for capacitance and internal resistance 14
 5.3.3 Acceptance criteria of capacitance and internal resistance 14
 5.4 **Leakage current and self-discharge** 15
 5.4.1 Leakage current .. 15
 5.4.2 Self-discharge .. 15
 5.5 **Insulation test between terminals and case** 15
 5.5.1 Capacitor cell (if applicable (applicable to metal case with terminals) and if required) .. 15
 5.5.2 Capacitor module or bank 16
 5.6 **Sealing test** ... 17
 5.7 **Surge discharge test (under consideration)Short-circuit test** 17
 5.7.1 General ... 17
 5.7.2 Preconditioning .. 17
 5.7.3 Initial measurement 17
 5.7.4 Test method .. 17
 5.7.5 Post treatment ... 17
 5.7.6 Final measurement 18
 5.7.7 Acceptance criteria 18
 5.8 **Environmental testing** 18
 5.8.1 Change of temperature 18
 5.8.2 Damp heat, steady state 19
5.9 Mechanical tests
5.9.1 Mechanical tests of terminals
5.9.2 External inspection
5.9.3 Vibration and shocks
5.10 Endurance test
5.10.1 General
5.10.2 Preconditioning
5.10.3 Initial measurements
5.10.4 Test methods
5.10.5 Post treatment
5.10.6 Final measurement
5.11 Endurance cycling test
5.11.1 General
5.11.2 Preconditioning
5.11.3 Initial measurements
5.11.4 Test method
5.11.5 End of test criteria
5.11.6 Post treatment
5.11.7 Final measurement
5.11.8 Acceptance criteria
5.12 Pressure relief test
5.13 Passive flammability
5.14 EMC test
6 Overloads
7 Safety requirements
7.1 Discharge device
7.2 Case connections (grounding)
7.3 Protection of the environment
7.4 Other safety requirements
8 Marking
8.1 Marking of the capacitor
8.1.1 Capacitor cell
8.1.2 Capacitor module or bank
8.2 Data sheet
9 Guidance for installation and operation
9.1 General
9.2 Choice of rated voltage
9.3 Operating temperature
9.3.1 Life time of capacitor
9.3.2 Installation
9.3.3 Unusual cooling conditions
9.4 Over voltages
9.5 Overload currents
9.6 Switching and protective devices
9.7 Dimensioning of creepage distance and clearance
9.8 Connections
9.9 Parallel connections of capacitors
9.10 Series connections of capacitors ... 28
9.11 Magnetic losses and eddy currents ... 28
9.12 Guide for unprotected capacitors ... 29

Annex A (informative) Terms and definitions of capacitors 30

Bibliography .. 31

Figure 1 – The voltage – time characteristics between capacitor terminals in capacitance and internal resistance measurement .. 14
Figure 2 – V block ... 16
Figure 3 – Endurance cycling test steps .. 22
Figure A.1 – Example of capacitor application in capacitor equipment 30

Table 1 – Classification of tests .. 12
Table 2 – Damp heat steady-state test ... 19
Table 3 – Testing the robustness of terminals .. 20
INTERNATIONAL ELECTROTECHNICAL COMMISSION

RAILWAY APPLICATIONS – ROLLING STOCK EQUIPMENT – CAPACITORS FOR POWER ELECTRONICS –

Part 3: Electric double-layer capacitors

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publications"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendment 1. Additions and deletions are displayed in red, with deletions being struck through. A separate Final version with all changes accepted is available in this publication.

This publication has been prepared for user convenience.
International Standard IEC 61881-3 has been prepared by subcommittee 9: Electrical equipment and systems for railways.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 61881 series, under the general title Railway applications – Rolling stock equipment – Capacitors for power electronics, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.

IMPORTANT – The “colour inside” logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.
RAILWAY APPLICATIONS – ROLLING STOCK EQUIPMENT – CAPACITORS FOR POWER ELECTRONICS –

Part 3: Electric double-layer capacitors

1 Scope

This part of IEC 61881 applies to d.c. electric double-layer capacitors (cell, module and bank) for power electronics intended to be used on rolling stock.

This standard specifies quality requirements and tests, safety requirements, and describes installation and operation information.

NOTE Example of the application for capacitors specified in this Standard; d.c. energy storage, etc.

Capacitors not covered by this Standard:
– IEC 61881-1: Paper/plastic film capacitors;
– IEC 61881-2: Aluminium electrolytic capacitors with non-solid electrolyte.

Guidance for installation and operation is given in Clause 9.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:1988, Environmental testing – Part 1: General and guidance and Amendment 1:1992

IEC 60068-2-20, Environmental testing – Part 2-20: Tests – Test T: Test methods for solderability and resistance to soldering heat of devices with leads

IEC 60068-2-21, Environmental testing – Part 2-21: Tests – Test U: Robustness of terminations and integral mounting devices

IEC 60068-2-78, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60721-3-5, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 5: Ground vehicle installations
IEC 61373:2010, *Railway applications – Rolling stock equipment – Shock and vibration tests*

IEC 62236-3-2, *Railway applications – Electromagnetic compatibility – Part 3-2: Rolling stock – Apparatus*

IEC 62497-1, *Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment*

IEC 62498-1:2010, *Railway applications – Environmental conditions for equipment – Part 1: Equipment on board rolling stock*

SOMMAIRE

AVANT-PROPOS .. 35

1 Domaine d’application .. 37
2 Références normatives ... 37
3 Termes et définitions .. 38
4 Conditions de service ... 41
 4.1 Conditions de service normales ... 41
 4.1.1 Généralités .. 41
 4.1.2 Altitude .. 41
 4.1.3 Température .. 41
 4.2 Conditions de service inhabituelles .. 41
5 Exigences de qualité et essais .. 42
 5.1 Exigences d’essai .. 42
 5.1.1 Généralités .. 42
 5.1.2 Conditions d’essai .. 42
 5.1.3 Conditions de mesure .. 42
 5.1.4 Traitement par application de tension ... 42
 5.1.5 Traitement thermique ... 42
 5.2 Classification des essais .. 42
 5.2.1 Généralités .. 42
 5.2.2 Essais de type ... 43
 5.2.3 Essais de série .. 44
 5.2.4 Essais d’acceptation .. 44
 5.3 Capacité et résistance interne .. 44
 5.3.1 Procédure de mesure de la capacité et de la résistance interne 44
 5.3.2 Méthodes de calcul de la capacité et de la résistance interne 45
 5.3.3 Critères d’acceptation de la capacité et de la résistance interne 45
 5.4 Courant de fuite et autodécharge ... 46
 5.4.1 Courant de fuite ... 46
 5.4.2 Autodécharge .. 46
 5.5 Essai d’isolation entre bornes et boîtier ... 46
 5.5.1 Unité de condensateur (S’il est applicable (applicable au boîtier métallique à bornes) et s’il est exigé) ... 46
 5.5.2 Module ou batterie de condensateurs ... 48
 5.6 Essai d’étanchéité ... 48
 5.7 Essai de tension de choc (à l’étude) court-circuit ... 48
 5.7.1 Généralités .. 48
 5.7.2 Préconditionnement .. 48
 5.7.3 Mesure initiale .. 48
 5.7.4 Méthode d’essai ... 48
 5.7.5 Post-traitement ... 49
 5.7.6 Mesure finale .. 49
 5.7.7 Critères d’acceptation .. 49
 5.8 Essais d’environnement ... 49
 5.8.1 Variation de température ... 49
 5.8.2 Chaleur humide, essai continu ... 50
5.9 Essais mécaniques .. 51
 5.9.1 Essais mécaniques des bornes .. 51
 5.9.2 Examen externe ... 51
 5.9.3 Vibrations et chocs .. 51

5.10 Essai d’endurance ... 51
 5.10.1 Généralités .. 51
 5.10.2 Préconditionnement .. 51
 5.10.3 Mesures initiales ... 52
 5.10.4 Méthodes d’essai .. 52
 5.10.5 Post-traitement ... 52
 5.10.6 Mesure finale ... 52
 5.10.7 Critères d’acceptation .. 52

5.11 Essai de cycle d’endurance ... 52
 5.11.1 Généralités .. 52
 5.11.2 Préconditionnement .. 52
 5.11.3 Mesures initiales ... 52
 5.11.4 Méthode d’essai .. 53
 5.11.5 Critères de fin d’essai .. 54
 5.11.6 Post-traitement ... 55
 5.11.7 Mesure finale ... 55
 5.11.8 Critères d’acceptation .. 55

5.12 Essai de décharge de pression .. 55

5.13 Inflammabilité passive ... 55

5.14 Essai CEM ... 55

6 Surcharges .. 56

7 Exigences de sécurité ... 56
 7.1 Dispositif de décharge .. 56
 7.2 Connexions du boîtier (mise à la terre) .. 56
 7.3 Protection de l’environnement .. 56
 7.4 Autres exigences de sécurité .. 57

8 Marquage ... 57
 8.1 Marquage du condensateur ... 57
 8.1.1 Unité de condensateur ... 57
 8.1.2 Module ou batterie de condensateurs ... 57
 8.2 Fiche technique ... 58

9 Guide d’installation et de fonctionnement ... 58
 9.1 Généralités ... 58
 9.2 Choix de la tension assignée .. 58
 9.3 Température de fonctionnement ... 58
 9.3.1 Durée de vie du condensateur .. 58
 9.3.2 Installation ... 59
 9.3.3 Conditions de refroidissement inhabituelles .. 59
 9.4 Surtensions .. 59
 9.5 Courants de surcharge ... 59
 9.6 Dispositifs de commutation et de protection .. 60
 9.7 Dimensionnement des lignes de fuite et des distances d’isolement 60
 9.8 Connexions ... 60
 9.9 Connexions parallèles des condensateurs ... 60
9.10 Connexions de condensateurs en série ...60
9.11 Pertes magnétiques et courants de Foucault ...60
9.12 Guide pour les condensateurs non protégés ..61
Annexe A (informative) Termes et définitions des condensateurs62
Bibliographie ..63

Figure 1 – Caractéristiques tension-temps entre les bornes du condensateur pour la mesure de la capacité et de la résistance interne ...45
Figure 2 – Support en V ..47
Figure 3 – Etapes de l’essai de cycle d’endurance ..54
Figure A.1 – Exemple d’application d’un condensateur dans une installation de condensateurs ...62

Tableau 1 – Classification des essais ..43
Tableau 2 – Essai à chaleur humide en régime établi ..50
Tableau 3 – Essai de robustesse des bornes ...51
La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de brevet. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

Dans cette version Redline, une ligne verticale dans la marge indique où le contenu technique est modifié par l'amendement 1. Les ajouts et les suppressions apparaissent en rouge, les suppressions étant barrées. Une version Finale avec toutes les modifications acceptées est disponible dans cette publication.

Cette publication a été préparée par commodité pour l'utilisateur.
La présente Norme internationale CEI 61881-3 a été établie par le comité d’études 9: Matériels et systèmes électriques ferroviaires.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 61881, présentées sous le titre général Applications ferroviaires – Matériel roulant – Condensateurs pour électronique de puissance, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de la publication de base et de son amendement ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

• reconduite,
• supprimée,
• remplacée par une édition révisée, ou
• amendée.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimateur couleur.
APPLICATIONS FERROVIAIRES – MATÉRIEL ROULANT – CONDENSATEURS POUR ÉLECTRONIQUE DE PUISSANCE –

Partie 3: Condensateurs électriques à double couche

1 Domaine d’application

La présente partie de la CEI 61881 s’applique aux condensateurs électriques à double couche en courant continu (unité, module et batterie) pour électronique de puissance, destinés à être utilisés sur le matériel roulant.

La présente norme spécifie les exigences relatives à la qualité et les essais, ainsi que les exigences de sécurité, et elle fournit des informations sur l’installation et les conditions de fonctionnement.

NOTE Exemple d’application pour les condensateurs spécifiés dans la présente Norme; stockage d’énergie en courant continu, etc.

Les condensateurs suivants ne sont pas couverts par la présente Norme:
– CEI 61881-1: Condensateurs papier et film plastique;
– CEI 61881-2: Condensateurs électrolytiques à l’aluminium, à électrolyte non solide.

Les guides d’installation et de fonctionnement sont fournis à l’Article 9.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l’édition citée s’applique. Pour les références non datées, la dernière édition du document de référence s’applique (y compris les éventuels amendements).

CEI 60068-1:1988, Essais d’environnement – Partie 1: Généralités et guide et Amendement 1:1992

CEI 60068-2-20, Essais d’environnement – Partie 2-20: Essais – Essai T: Méthodes d’essai de la brasabilité et de la résistance à la chaleur de brasage des dispositifs à broches

CEI 60068-2-78, Essais d’environnement – Partie 2-78: Essais – Essai Cab: Chaleur humide, essai continu

3.1 élément de condensateur
partie indivisible d'un condensateur constituée de deux électrodes (généralement composées de carbone) séparées par un séparateur imprégné d'électrolyte

Note 1 à l'article: Dans la littérature, ce type d'élément de condensateur est souvent appelé élément EDLC (Electric double layer capacitor, en anglais). Un élément de condensateur électrique à double couche utilise la capacité d'accumulation d'une charge électrique dans une double couche électrique qui se forme à la surface limite entre un matériau d'électrode (conducteur électronique) et un électrolyte. Ce condensateur est principalement conçu pour fonctionner avec une tension continue.

3.2 unité de condensateur
un ou plusieurs éléments de condensateurs placés dans une même enveloppe et reliés à des bornes de sortie

VOIR: Annexe A

3.3 module de condensateurs
ensemble de deux unités de condensateurs ou plus, raccordées entre elles électriquement avec ou sans équipement électronique supplémentaire

VOIR: Annexe A

3.4 batterie de condensateurs
ensemble de deux modules de condensateurs ou plus
Railway applications – Rolling stock equipment – Capacitors for power electronics –
Part 3: Electric double-layer capacitors

Applications ferroviaires – Matériel roulant – Condensateurs pour électronique
de puissance –
Partie 3: Condensateurs électriques à double couche
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>Scope</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Normative references</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Terms and definitions</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Service conditions</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Normal service conditions</td>
<td>10</td>
</tr>
<tr>
<td>4.1.1</td>
<td>General</td>
<td>10</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Altitude</td>
<td>10</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Temperature</td>
<td>11</td>
</tr>
<tr>
<td>4.2</td>
<td>Unusual service conditions</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Quality requirements and tests</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>Test requirements</td>
<td>11</td>
</tr>
<tr>
<td>5.1.1</td>
<td>General</td>
<td>11</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Test conditions</td>
<td>11</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Measurement conditions</td>
<td>12</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Voltage treatment</td>
<td>12</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Thermal treatment</td>
<td>12</td>
</tr>
<tr>
<td>5.2</td>
<td>Classification of tests</td>
<td>12</td>
</tr>
<tr>
<td>5.2.1</td>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Type tests</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Routine tests</td>
<td>13</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Acceptance tests</td>
<td>13</td>
</tr>
<tr>
<td>5.3</td>
<td>Capacitance and internal resistance</td>
<td>13</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Measurement procedure for capacitance and internal resistance</td>
<td>13</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Calculation methods for capacitance and internal resistance</td>
<td>14</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Acceptance criteria of capacitance and internal resistance</td>
<td>14</td>
</tr>
<tr>
<td>5.4</td>
<td>Leakage current and self-discharge</td>
<td>15</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Leakage current</td>
<td>15</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Self-discharge</td>
<td>15</td>
</tr>
<tr>
<td>5.5</td>
<td>Insulation test between terminals and case</td>
<td>15</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Capacitor cell (if applicable (applicable to metal case with terminals) and if required)</td>
<td>15</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Capacitor module or bank</td>
<td>16</td>
</tr>
<tr>
<td>5.6</td>
<td>Sealing test</td>
<td>17</td>
</tr>
<tr>
<td>5.7</td>
<td>Short-circuit test</td>
<td>17</td>
</tr>
<tr>
<td>5.7.1</td>
<td>General</td>
<td>17</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Preconditioning</td>
<td>17</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Initial measurement</td>
<td>17</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Test method</td>
<td>17</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Post treatment</td>
<td>17</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Final measurement</td>
<td>17</td>
</tr>
<tr>
<td>5.7.7</td>
<td>Acceptance criteria</td>
<td>17</td>
</tr>
<tr>
<td>5.8</td>
<td>Environmental testing</td>
<td>18</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Change of temperature</td>
<td>18</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Damp heat, steady state</td>
<td>18</td>
</tr>
</tbody>
</table>
5.9 Mechanical tests ... 19
 5.9.1 Mechanical tests of terminals 19
 5.9.2 External inspection .. 20
 5.9.3 Vibration and shocks .. 20
5.10 Endurance test ... 20
 5.10.1 General .. 20
 5.10.2 Preconditioning ... 20
 5.10.3 Initial measurements .. 20
 5.10.4 Test methods .. 20
 5.10.5 Post treatment ... 21
 5.10.6 Final measurement .. 21
 5.10.7 Acceptance criteria .. 21
5.11 Endurance cycling test .. 21
 5.11.1 General .. 21
 5.11.2 Preconditioning ... 21
 5.11.3 Initial measurements .. 21
 5.11.4 Test method .. 21
 5.11.5 End of test criteria .. 23
 5.11.6 Post treatment ... 23
 5.11.7 Final measurement .. 23
 5.11.8 Acceptance criteria .. 23
5.12 Pressure relief test .. 23
5.13 Passive flammability ... 23
5.14 EMC test ... 23
6 Overloads .. 24
7 Safety requirements .. 24
 7.1 Discharge device ... 24
 7.2 Case connections (grounding) 24
 7.3 Protection of the environment 24
 7.4 Other safety requirements .. 24
8 Marking ... 25
 8.1 Marking of the capacitor ... 25
 8.1.1 Capacitor cell .. 25
 8.1.2 Capacitor module or bank 25
 8.2 Data sheet .. 25
9 Guidance for installation and operation 26
 9.1 General ... 26
 9.2 Choice of rated voltage .. 26
 9.3 Operating temperature .. 26
 9.3.1 Life time of capacitor .. 26
 9.3.2 Installation ... 26
 9.3.3 Unusual cooling conditions 27
 9.4 Over voltages ... 27
 9.5 Overload currents .. 27
 9.6 Switching and protective devices 27
 9.7 Dimensioning of creepage distance and clearance 27
 9.8 Connections ... 27
 9.9 Parallel connections of capacitors 28
INTERNATIONAL ELECTROTECHNICAL COMMISSION

RAILWAY APPLICATIONS –
ROLLING STOCK EQUIPMENT –
CAPACITORS FOR POWER ELECTRONICS –

Part 3: Electric double-layer capacitors

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This Final version does not show where the technical content is modified by amendment 1. A separate Redline version with all changes highlighted is available in this publication.

This publication has been prepared for user convenience.
International Standard IEC 61881-3 has been prepared by subcommittee 9: Electrical equipment and systems for railways.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 61881 series, under the general title Railway applications – Rolling stock equipment – Capacitors for power electronics, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendment will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
RAILWAY APPLICATIONS – ROLLING STOCK EQUIPMENT – CAPACITORS FOR POWER ELECTRONICS –

Part 3: Electric double-layer capacitors

1 Scope

This part of IEC 61881 applies to d.c. electric double-layer capacitors (cell, module and bank) for power electronics intended to be used on rolling stock.

This standard specifies quality requirements and tests, safety requirements, and describes installation and operation information.

NOTE Example of the application for capacitors specified in this Standard; d.c. energy storage, etc.

Capacitors not covered by this Standard:
– IEC 61881-1: Paper/plastic film capacitors;
– IEC 61881-2: Aluminium electrolytic capacitors with non-solid electrolyte.

Guidance for installation and operation is given in Clause 9.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-1:1988, Environmental testing – Part 1: General and guidance and Amendment 1:1992

IEC 60068-2-20, Environmental testing – Part 2-20: Tests – Test T: Test methods for solderability and resistance to soldering heat of devices with leads

IEC 60068-2-21, Environmental testing – Part 2-21: Tests – Test U: Robustness of terminations and integral mounting devices

IEC 60068-2-78, Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state

IEC 60721-3-5, Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities – Section 5: Ground vehicle installations
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 capacitor element
indivisible part of a capacitor consisting of two electrodes (typically made of carbon) separated by an electrolyte impregnated separator

Note 1 to entry: In the literature, this type of capacitor element is often called EDLC (Electric double layer capacitor) element. An electric double-layer capacitor element utilizes the ability to accumulate electric charge in an electric double layer which is formed at the boundary surface between an electrode material (electronic conductor) and an electrolyte. This capacitor is essentially designed for operation with direct current voltage.

3.2 capacitor cell
one or more capacitor elements, packaged in the same enclosure with terminals brought out

SEE: Annex A

3.3 capacitor module
assembly of two or more capacitor cells, electrically connected to each other with or without additional electronics

SEE: Annex A

3.4 capacitor bank
assembly of two or more capacitor modules

SEE: Annex A

3.5 capacitor
general term used when it is not necessary to state whether a reference is made to capacitor cell, module or bank

[SOURCE: IEC 61881-1:2010, 3, modified]
SOMMAIRE

AVANT-PROPOS.. 35

1 Domaine d’application ... 37
2 Références normatives ... 37
3 Termes et définitions ... 38
4 Conditions de service ... 41
 4.1 Conditions de service normales .. 41
 4.1.1 Généralités ... 41
 4.1.2 Altitude .. 41
 4.1.3 Température ... 41
 4.2 Conditions de service inhabituelles ... 41
5 Exigences de qualité et essais ... 42
 5.1 Exigences d’essai .. 42
 5.1.1 Généralités ... 42
 5.1.2 Conditions d’essai .. 42
 5.1.3 Conditions de mesure .. 42
 5.1.4 Traitement par application de tension .. 42
 5.1.5 Traitement thermique .. 42
 5.2 Classification des essais .. 42
 5.2.1 Généralités ... 42
 5.2.2 Essais de type .. 43
 5.2.3 Essais de série ... 44
 5.2.4 Essais d’acceptation ... 44
 5.3 Capacité et résistance interne .. 44
 5.3.1 Procédure de mesure de la capacité et de la résistance interne 44
 5.3.2 Méthodes de calcul de la capacité et de la résistance interne 45
 5.3.3 Critères d’acceptation de la capacité et de la résistance interne 45
 5.4 Courant de fuite et autodécharge .. 46
 5.4.1 Courant de fuite ... 46
 5.4.2 Autodécharge .. 46
 5.5 Essai d’isolation entre bornes et boîtier .. 46
 5.5.1 Unité de condensateur (S’il est applicable (applicable au boîtier métallique à bornes) et s’il est exigé)... 46
 5.5.2 Module ou batterie de condensateurs ... 48
 5.6 Essai d’étanchéité .. 48
 5.7 Essai de court-circuit .. 48
 5.7.1 Généralités ... 48
 5.7.2 Préconditionnement .. 48
 5.7.3 Mesure initiale .. 48
 5.7.4 Méthode d’essai .. 48
 5.7.5 Post-traitement .. 49
 5.7.6 Mesure finale ... 49
 5.7.7 Critères d’acceptation ... 49
 5.8 Essais d’environnement .. 49
 5.8.1 Variation de température ... 49
 5.8.2 Chaleur humide, essai continu .. 50
5.9 Essais mécaniques.. 51
 5.9.1 Essais mécaniques des bornes ... 51
 5.9.2 Examen externe .. 51
 5.9.3 Vibrations et chocs .. 51
5.10 Essai d’endurance ... 51
 5.10.1 Généralités .. 51
 5.10.2 Préconditionnement .. 51
 5.10.3 Mesures initiales ... 51
 5.10.4 Méthodes d’essai .. 52
 5.10.5 Post-traitement .. 52
 5.10.6 Mesure finale .. 52
 5.10.7 Critères d’acceptation .. 52
5.11 Essai de cycle d’endurance ... 52
 5.11.1 Généralités .. 52
 5.11.2 Préconditionnement .. 52
 5.11.3 Mesures initiales ... 52
 5.11.4 Méthode d’essai .. 52
 5.11.5 Critères de fin d’essai .. 54
 5.11.6 Post-traitement .. 54
 5.11.7 Mesure finale .. 54
 5.11.8 Critères d’acceptation .. 54
5.12 Essai de décharge de pression ... 54
5.13 Inflammabilité passive .. 54
5.14 Essai CEM ... 55
6 Surcharges ... 55
7 Exigences de sécurité .. 55
 7.1 Dispositif de décharge ... 55
 7.2 Connexions du boîtier (mise à la terre) .. 55
 7.3 Protection de l’environnement ... 56
 7.4 Autres exigences de sécurité ... 56
8 Marquage ... 56
 8.1 Marquage du condensateur .. 56
 8.1.1 Unité de condensateur ... 56
 8.1.2 Module ou batterie de condensateurs ... 56
 8.2 Fiche technique .. 57
9 Guide d’installation et de fonctionnement ... 57
 9.1 Généralités ... 57
 9.2 Choix de la tension assignée .. 57
 9.3 Température de fonctionnement .. 58
 9.3.1 Durée de vie du condensateur .. 58
 9.3.2 Installation .. 58
 9.3.3 Conditions de refroidissement inhabituelles ... 58
 9.4 Surtensions ... 59
 9.5 Courants de surcharge .. 59
 9.6 Dispositifs de commutation et de protection ... 59
 9.7 Dimensionnement des lignes de fuite et des distances d’isolement 59
 9.8 Connexions .. 59
 9.9 Connexions parallèles des condensateurs ... 59
9.10 Connexions de condensateurs en série ...60
9.11 Pertes magnétiques et courants de Foucault ...60
9.12 Guide pour les condensateurs non protégés ..60
Annexe A (informative) Termes et définitions des condensateurs61
Bibliographie ..62

Figure 1 – Caractéristiques tension-temps entre les bornes du condensateur pour la mesure de la capacité et de la résistance interne ..45
Figure 2 – Support en V ..47
Figure 3 – Étapes de l’essai de cycle d’endurance ...53
Figure A.1 – Exemple d’application d’un condensateur dans une installation de condensateurs ...61

Tableau 1 – Classification des essais ...43
Tableau 2 – Essai à chaleur humide en régime établi ..50
Tableau 3 – Essai de robustesse des bornes ...51
APPLICATIONS FERROVIAIRES – MATÉRIEL ROULANT – CONDENSATEURS POUR ÉLECTRONIQUE DE PUISSANCE –
Partie 3: Condensateurs électriques à double couche

AVANT-PROPOS

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d’études.

3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s’assure de l’exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d’encourager l’uniformité internationale, les Comités nationaux de la CEI s’engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l’objet de droits de brevet. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

Cette version Finale ne montre pas les modifications apportées au contenu technique par l’amendement 1. Une version Redline montrant toutes les modifications est disponible dans cette publication.

Cette publication a été préparée par commodité pour l’utilisateur.
La présente Norme internationale CEI 61881-3 a été établie par le comité d'études 9: Matériels et systèmes électriques ferroviaires.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 61881, présentées sous le titre général Applications ferroviaires – Matériel roulant – Condensateurs pour électronique de puissance, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de la publication de base et de son amendement ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.
APPLICATIONS FERROVIAIRES –
MATÉRIEL ROULANT –
CONDENSATEURS POUR ÉLECTRONIQUE DE PUISSANCE –

Partie 3: Condensateurs électriques à double couche

1 Domaine d’application

La présente partie de la CEI 61881 s’applique aux condensateurs électriques à double couche en courant continu (unité, module et batterie) pour électronique de puissance, destinés à être utilisés sur le matériel roulant.

La présente norme spécifie les exigences relatives à la qualité et les essais, ainsi que les exigences de sécurité, et elle fournit des informations sur l’installation et les conditions de fonctionnement.

NOTE Exemple d’application pour les condensateurs spécifiés dans la présente Norme; stockage d’énergie en courant continu, etc.

Les condensateurs suivants ne sont pas couverts par la présente Norme:
– CEI 61881-1: Condensateurs papier et film plastique;
– CEI 61881-2: Condensateurs électrolytiques à l’aluminium, à électrolyte non solide.

Les guides d’installation et de fonctionnement sont fournis à l’Article 9.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l’édition citée s’applique. Pour les références non datées, la dernière édition du document de référence s’applique (y compris les éventuels amendements).

CEI 60068-1:1988, Essais d’environnement – Partie 1: Généralités et guide et Amendement 1:1992

CEI 60068-2-20, Essais d’environnement – Partie 2-20: Essais – Essai T: Méthodes d’essai de la brasabilité et de la résistance à la chaleur de brasage des dispositifs à broches

CEI 60068-2-78, Essais d’environnement – Partie 2-78: Essais – Essai Cab: Chaleur humide, essai continu

CEI 60721-3-5, Classification des conditions d’environnement – Partie 3: Classification des groupements des agents d’environnement et de leurs sévérités – Section 5: Installations des véhicules terrestres

CEI 61373:2010, Applications ferroviaires – Matériel roulant – Essais de chocs et vibrations

CEI 62236-3-2, Applications ferroviaires – Compatibilité électromagnétique – Partie 3-2: Matériel roulant – Appareils

IEC 62391-2:2006, Condensateurs électriques fixes à double couche utilisés dans les équipements électroniques – Partie 2: Spécification intermédiaire – Condensateurs électriques à double couche pour application de puisssance

CEI 62497-1, Applications ferroviaires – Coordination de l’isolation – Partie 1: Exigences fondamentales – Distances d’isolation dans l’air et lignes de fuite pour tout matériel électrique et électronique

CEI 62498-1:2010, Applications ferroviaires – Conditions d’environnement pour le matériel – Partie 1: Equipement embarqué du matériel roulant

CEI 62576:2009, Condensateurs électriques à double couche pour véhicules électriques hybrides – Méthodes d’essai des caractéristiques électriques

3.1 élément de condensateur
partie indivisible d’un condensateur constituée de deux électrodes (généralement composées de carbone) séparées par un séparateur imprégné d’électrolyte

Note 1 à l’article: Dans la littérature, ce type d’élément de condensateur est souvent appelé élément EDLC (Electric double layer capacitor, en anglais). Un élément de condensateur électrique à double couche utilise la capacité d’accumulation d’une charge électrique dans une double couche électrique qui se forme à la surface limite entre un matériau d’électrode (conducteur électronique) et un électrolyte. Ce condensateur est principalement conçu pour fonctionner avec une tension continue.

3.2 unité de condensateur
un ou plusieurs éléments de condensateurs placés dans une même enveloppe et reliés à des bornes de sortie

Voir : Annexe A

3.3 module de condensateurs
ensemble de deux unités de condensateurs ou plus, raccordées entre elles électriquement avec ou sans équipement électronique supplémentaire

Voir : Annexe A

3.4 batterie de condensateurs
ensemble de deux modules de condensateurs ou plus