INTERNATIONAL STANDARD

Application integration at electric utilities – System interfaces for distribution management –
Part 6: Interfaces for maintenance and construction
CONTENTS

FOREWORD ... 4
INTRODUCTION .. 6
1 Scope .. 8
2 Normative references ... 8
3 Terms, definitions and abbreviations .. 9
 3.1 Terms and definitions .. 9
 3.2 Abbreviations .. 9
4 Reference and information models ... 9
 4.1 General .. 9
 4.2 Reference model .. 10
 4.2.1 General .. 10
 4.2.2 Geographical Inventory (GINV) .. 12
 4.2.3 Maintenance and Inspection (MAI) .. 12
 4.2.4 Construction ... 12
 4.2.5 Design .. 12
 4.2.6 Work Scheduling and Dispatching (SCHD) .. 12
 4.2.7 Field Recording (FRD) ... 12
 4.2.8 Network Operation Simulation (SIM) ... 12
 4.2.9 Customer Service (CS) .. 12
 4.2.10 Trouble call management (TCM) ... 12
 4.2.11 Financial (FIN) ... 13
 4.2.12 Human resources .. 13
 4.2.13 Asset Management (AM) System ... 13
 4.2.14 Network Operations (NO) .. 13
 4.3 Interface reference model .. 13
 4.4 Maintenance and construction functions and components ... 14
 4.5 Static information model ... 14
 4.5.1 Information model classes ... 14
 4.5.2 Classes for maintenance and construction ... 14
 4.6 Maintenance and construction use cases ... 15
5 Maintenance and construction message types ... 16
 5.1 General .. 16
 5.2 Work ... 17
 5.3 Work request message ... 17
 5.3.1 General .. 17
 5.3.2 Applications – Carry out planned maintenance with temporary equipment 17
 5.3.3 Message format ... 19
 5.4 Service order message ... 20
 5.4.1 General .. 20
 5.4.2 Applications – Meter installation and removal ... 20
 5.4.3 Message format ... 21
 5.5 Maintenance order message .. 23
 5.5.1 General .. 23
 5.5.2 Applications .. 23
 5.5.3 Message format ... 24
INTERNATIONAL ELECTROTECHNICAL COMMISSION

APPLICATION INTEGRATION AT ELECTRIC UTILITIES – SYSTEM INTERFACES FOR DISTRIBUTION MANAGEMENT –

Part 6: Interfaces for maintenance and construction

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This part of International Standard IEC 61968 has been prepared by IEC technical committee 57: Power systems management and associated information exchange.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/1566/FDIS</td>
<td>57/1586/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 61968 series, published under the general title *Application integration at electric utilities – System interfaces for distribution management*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under “http://webstore.iec.ch” in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The IEC 61968 standard, taken as a whole, defines interfaces for the major elements of an interface architecture for Distribution Management Systems (DMS). IEC 61968-1, Interface architecture and general recommendations, identifies and establishes requirements for standard interfaces based on an Interface Reference Model (IRM). IEC 61968-3 to 9 of this standard define interfaces relevant to each of the major business functions described by the Interface Reference Model.

As used in IEC 61968, a DMS consists of various distributed application components for the utility to manage electrical distribution networks. These capabilities include monitoring and control of equipment for power delivery, management processes to ensure system reliability, voltage management, demand-side management, outage management, work management, automated mapping and facilities management.

This set of standards is limited to the definition of interfaces and is implementation independent. They provide for interoperability among different computer systems, platforms, and languages. Methods and technologies used to implement functionality conforming to these interfaces are considered outside of the scope of these standards; only the interface itself is specified in these standards.

The purpose of this part of IEC 61968 is to define a standard for the integration of Maintenance and Construction Systems (MC), which would include Work Management Systems, with other systems and business functions within the scope of IEC 61968. The scope of this standard is the exchange of information between Maintenance and Construction Systems and other systems within the utility enterprise. The specific details of communication protocols those systems employ are outside the scope of this standard. Instead, this standard will recognize and model the general capabilities that can be potentially provided by maintenance and construction systems including planned, unplanned and conditional maintenance. In this way, this standard will not be impacted by the specification, development and/or deployment of next generation maintenance systems, either through the use of standards or proprietary means.

The IEC 61968 series of standards is intended to facilitate inter-application integration as opposed to intra-application integration. Intra-application integration is aimed at programs in the same application system, usually communicating with each other using middleware that is embedded in their underlying runtime environment, and tends to be optimised for close, real-time, synchronous connections and interactive request/reply or conversation communication models. IEC 61968, by contrast, is intended to support the inter-application integration of a utility enterprise that needs to connect disparate applications that are already built or new (legacy or purchased applications), each supported by dissimilar runtime environments. Therefore, these interface standards are relevant to loosely coupled applications with more heterogeneity in languages, operating systems, protocols and management tools. This series of standards is intended to support applications that need to exchange data every few seconds, minutes, or hours rather than waiting for a nightly batch run. This series of standards, which are intended to be implemented with middleware services that exchange messages among applications, will complement, not replace, utility data warehouses, database gateways, and operational stores.

As used in IEC 61968, a Distribution Management System (DMS) consists of various distributed application components for the utility to manage electrical distribution networks. These capabilities include monitoring and control of equipment for power delivery, management processes to ensure system reliability, voltage management, demand-side management, outage management, work management, automated mapping and facilities management. Standard interfaces are defined for each class of applications identified in the Interface Reference Model (IRM), which is described in IEC 61968-1, Interface architecture and general recommendations.
This part of IEC 61968 contains the clauses listed in Table 1.

Table 1 – Document overview for IEC 61968-6

<table>
<thead>
<tr>
<th>Clause</th>
<th>Title</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
<td>The scope and purpose of the document are described.</td>
</tr>
<tr>
<td>2</td>
<td>Normative references</td>
<td>Documents that contain provisions which, through reference in this text, constitute provisions of this International Standard.</td>
</tr>
<tr>
<td>3</td>
<td>Reference and information models</td>
<td>Description of general approach to work management system, reference model, use cases, interface reference model, maintenance and construction functions and components, message type terms and static information model.</td>
</tr>
<tr>
<td>4</td>
<td>Maintenance and construction message types</td>
<td>Message types related to the exchange of information for documents related to maintenance and construction.</td>
</tr>
<tr>
<td>Annex A</td>
<td>Message type verbs</td>
<td>Description of the verbs that are used for the message types.</td>
</tr>
<tr>
<td>Annex B</td>
<td>XML schemas for message payloads</td>
<td>To provide xsd information for use by developers to create IEC 61968-9 messages.</td>
</tr>
</tbody>
</table>
1 Scope

This part of IEC 61968 specifies the information content of a set of message types that can be used to support business functions related to Maintenance and Construction. Typical uses of the message types defined in this part of IEC 61968 include planned maintenance, unplanned maintenance, conditional maintenance, work management, new service requests, etc. Message types defined in other parts of IEC 61968 may also be relevant to these use cases.

The mapping of these messages to specific technologies such as XML will be described at a later date.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050, International Electrotechnical Vocabulary

IEC 61968-1, Application integration at electric utilities – System interfaces for distribution management – Part 1: Interface architecture and general recommendations

IEC TS 61968-2, Application integration at electric utilities – System interfaces for distribution management – Part 2: Glossary

IEC 61968-4, Application integration at electric utilities – System interfaces for distribution management – Part 4: Interfaces for records and asset management

IEC 61968-9:2013, Application integration at electric utilities – System interfaces for distribution management – Part 9: Interfaces for meter reading and control

IEC 61968-11, Application integration at electric utilities – System interfaces for distribution management – Part 11: Common information model (CIM) extensions for distribution

IEC 61970-301, Energy management system application program interface (EMS-API) – Part 301: Common information model (CIM) base

IEC TR 62051, Electricity metering – Glossary of terms

IEC 62055-31, Electricity metering – Payment systems – Part 31: Particular requirements – Static payment meters for active energy (classes 1 and 2)