INTERNATIONAL STANDARD

IEC 62271-105

First edition 2002-08

High-voltage switchgear and controlgear – Part 105: Alternating current switch-fuse combinations

This English-language version is derived from the original bilingual publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.
High-voltage switchgear and controlgear –
Part 105:
Alternating current switch-fuse combinations

© IEC 2002 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
CONTENTS

FOREWORD ... 7
1 General ... 13
 1.1 Scope .. 13
 1.2 Normative references .. 15
2 Normal and special service conditions ... 15
3 Definitions .. 15
 3.1 General terms ... 15
 3.2 Assemblies .. 15
 3.3 Parts of assemblies .. 15
 3.4 Switching devices .. 17
 3.5 Parts of switching devices ... 17
 3.6 Operation .. 17
 3.7 Characteristic quantities .. 19
 3.8 Fuses ... 23
4 Ratings .. 25
 4.1 Rated voltage \((U_r) \) .. 25
 4.2 Rated insulation level ... 25
 4.3 Rated frequency \((f_r) \) ... 25
 4.4 Rated normal current and temperature-rise .. 25
 4.5 Rated short-time withstand current \((I_k) \) ... 25
 4.6 Rated peak withstand current \((I_p) \) ... 25
 4.7 Rated duration of short circuit \((t_k) \) .. 27
 4.8 Rated supply voltage of closing and opening devices and auxiliary circuits \((U_a) \) ... 27
 4.9 Rated supply frequency of closing and opening devices and of auxiliary circuits 27
4.10 Rated pressure of compressed gas supply for operation ... 27
5 Design and construction ... 29
 5.1 Requirements for liquids in switch-fuse combinations ... 29
 5.2 Requirements for gases in switch-fuse combinations ... 29
 5.3 Earthing of switch-fuse combinations .. 29
 5.4 Auxiliary equipment ... 29
 5.5 Dependent power operation ... 29
 5.6 Stored energy operation .. 29
 5.7 Independent manual operation .. 29
 5.8 Operation of releases ... 29
 5.9 Low- and high pressure interlocking devices .. 31
 5.10 Nameplates .. 31
 5.11 Interlocking devices ... 31
 5.12 Position indication .. 33
 5.13 Degrees of protection by enclosures .. 33
 5.14 Creepage distances ... 33
 5.15 Gas and vacuum tightness ... 33
 5.16 Liquid tightness .. 33
 5.17 Flammability .. 33
5.18 Electromagnetic compatibility (EMC).. 33
6 Type tests..35
 6.1 General ...35
 6.2 Dielectric tests...37
 6.3 Radio interference voltage (RIV) tests ...37
 6.4 Measurement of the resistance of the main circuit ...37
 6.5 Temperature-rise tests...37
 6.6 Short-time withstand current and peak withstand current tests...............................37
 6.7 Verification of the protection ..37
 6.8 Tightness tests ..39
 6.9 Electromagnetic compatibility tests (EMC)...39

7 Routine tests ...59

8 Guide for the selection of switch-fuse combinations for transformer protection...............61

9 Information to be given with enquiries, tenders and orders..65

10 Rules for transport, storage, installation, operation and maintenance..............................67

11 Safety ...67

Annex A (informative) Example of the coordination of fuses, switch and transformer............69
Annex B (normative) Procedure for determining transfer current ..73

Figure 1 – Representation of a specified TRV by a two-parameter reference line and a delay line ..77
Figure 2 – Example of a two-parameter reference line for a TRV77
Figure 3 – Arrangement of test circuits for test duties TD_{Isc} and TD_{IWmax}79
Figure 4 – Arrangement of test circuits for test duty TD_{Itransfer} ..79
Figure 5 – Arrangement of test circuits for test duty TD_{Ito} ..81
Figure 6 – Determination of power-frequency recovery voltage ..83
Figure 7 – Practical determination of transfer current ...85
Figure 8 – Determination of the transfer current with the iterative method87
Figure 9 – Transfer current in relation to the primary fault current I_{sc} due to a solid short in the transformer secondary terminal ...89
Figure 10 – Characteristics relating to the protection of an 11 kV – 400 kVA transformer91
Figure 11 – Discrimination between HV and LV fuses ...93
Figure 12 – Characteristics for determining take-over current ...95

Table 1 – Nameplate markings ..31
Table 2 – Standard values of prospective TRV for test duty TD_{Itransfer}51
Table 3 – Summary of test parameters for test duties ...53
INTERNATIONAL ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 105: Alternating current switch-fuse combinations

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-105 has been prepared by subcommittee 17A, High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

This first edition cancels and replaces the second edition of IEC 60420, published in 1990, and constitutes a technical revision. A reference table to explain the new numbering in this series is provided at the end of this foreword.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>17A/633/FDIS</td>
<td>17A/640/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

This standard should be read in conjunction with IEC 60694, second edition, published in 1996, to which it refers and which is applicable, unless otherwise specified. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in IEC 60694. Amendments to these clauses and subclauses are given under the same numbering, whilst additional subclauses are numbered from 101.
Annex A is for information only.
Annex B forms an integral part of this standard.

The committee has decided that the contents of this publication will remain unchanged until 2013. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

New numbering

In accordance with the decision taken at the joint SC 17A/SC 17C meeting in Frankfurt, June 1998 (item 20.7 of 17A/535/RM), a common numbering system will be established of the standards falling under the responsibility of SC 17A and SC 17C. IEC 62271 (with the main title of *High-voltage switchgear and controlgear*) is the basis of the common standard.

The numbering of these standards will apply the following principle:

a) Common standards prepared by SC 17A and SC 17C will start with IEC 62271-001;
b) Standards of SC 17A will start with IEC 62271-100;
c) Standards of SC 17C will start with IEC 62271-200;
d) Guides prepared by SC 17A and SC 17C will start with IEC 62271-300.

The following table provides an overview of the relationship between the old and new numbering.
Common numbering of IEC 62271 standards falling under the responsibility of sub-committees 17A and 17C *

<table>
<thead>
<tr>
<th>IEC 62271 Part</th>
<th>HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR</th>
<th>Original title</th>
<th>Old IEC number, if any</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Common specifications for high-voltage switchgear and controlgear standards</td>
<td>60694</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>High-voltage alternating current circuit-breakers</td>
<td>60056</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Synthetic testing of high-voltage alternating current circuit-breakers</td>
<td>60427</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Alternating current disconnectors and earthing switches</td>
<td>60129</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Switches for rated voltages above 1 kV and less than 52 kV</td>
<td>60265-1</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>High-voltage switches for rated voltages of 52 kV and above</td>
<td>60265-2</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Alternating current switch-fuse combinations</td>
<td>60420</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>High-voltage alternating current contactors and contactor-based motor-starters</td>
<td>60470</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>High-voltage alternating current switchgear-fuse combinations</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Switchgear having combined functions</td>
<td>New</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Alternating-current series capacitor by-pass switches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>AC metal enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV</td>
<td>60298</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>AC insulation-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 38 kV</td>
<td>60466</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>High-voltage/low-voltage prefabricated substations</td>
<td>61330</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Gas-insulated metal-enclosed switchgear for rated voltages of 72,5 kV and above</td>
<td>60517</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Rigid high-voltage, gas-insulated transmission lines for rated voltages of 72,5 kV and above</td>
<td>61640</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Guide for seismic qualification of high-voltage alternating current circuit-breakers</td>
<td>61166</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>High-voltage alternating current circuit-breakers – Inductive load switching</td>
<td>61233</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>High-voltage alternating current circuit-breakers – Guide for short-circuit and switching test procedures for metal-enclosed and dead tank circuit-breakers</td>
<td>61633</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>High-voltage switchgear and controlgear – Use and handling of sulphur hexafluoride (SF₆) in high-voltage switchgear and controlgear</td>
<td>61634</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Additional requirements for enclosed switchgear and controlgear from 1 kV to 72,5 kV to be used in severe climatic conditions</td>
<td>60932</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Cable connections for gas-insulated metal-enclosed switchgear for rated voltages of 72,5 kV and above – Fluid-filled and extruded insulation cables – Fluid-filled and dry type cable-terminations</td>
<td>60859</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>Direct connection between power transformers and gas-insulated metal-enclosed switchgear for rated voltages of 72,5 kV and above</td>
<td>61639</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>High-voltage switchgear and controlgear – The use of electronic and associated technologies in auxiliary equipment of switchgear and controlgear</td>
<td>62063</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>Guide for asymmetrical short-circuit breaking test duty T100a</td>
<td>62215</td>
<td></td>
</tr>
</tbody>
</table>

* The table is subject to change pending the transfer of technical reports to standards.
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 105: Alternating current switch-fuse combinations

1 General

1.1 Scope

This part of IEC 62271 applies to three-pole units for public and industrial distribution systems which are functional assemblies of switches including switch-disconnectors and current-limiting fuses designed so as to be capable of

– breaking, at the rated recovery voltage, any current up to and including the rated short-circuit breaking current,
– making, at the rated voltage, circuits to which the rated short-circuit breaking current applies.

It does not apply to fuse-circuit-breakers, fuse-contactors, combinations for motor-circuits or to combinations incorporating single capacitor bank switches.

In this standard, the word “combination” is used for combination in which the components constitute a functional assembly. Each association of a given type of switch and a given type of fuse defines one type of combination.

In practice, different types of fuses may be combined with one type of switch, which gives several combinations with different characteristics, in particular concerning the rated currents. Moreover, for maintenance purposes, the user should know the types of fuses that can be associated to a given switch without impairing compliance to the standard, and the corresponding characteristics of the so-made combination.

A switch-fuse combination is then defined by its type designation and a list of selected fuses is defined by the manufacturer, the so-called “reference list of fuses”. Compliance with this standard of a given combination means that every combination using one of the selected fuses is proven to be in compliance with this standard.

The fuses are incorporated in order to extend the short-circuit breaking rating of the combination beyond that of the switch alone. They are fitted with strikers in order both to open automatically all three poles of the switch on the operation of a fuse and to achieve a correct operation at values of fault current above the minimum melting current but below the minimum breaking current of the fuses. In addition to the fuse strikers, the combination may be fitted with either an over-current release or a shunt release.

NOTE In this standard the term “fuse” is used to designate either the fuse or the fuse-link where the general meaning of the text does not result in ambiguity.

This standard applies to combinations designed with rated voltages above 1 kV up to and including 52 kV for use on three-phase alternating current systems of either 50 Hz or 60 Hz.

Fuses are covered by IEC 60282-1.
Switches, including their specific mechanism, should be in accordance with IEC 60265-1 except for the short-time current and short-circuit making requirements where the current-limiting effects of the fuses are taken into account.

Earthing switches forming an integral part of a combination are covered by IEC 62271-102.

1.2 Normative references

Subclause 1.2 of IEC 60694 is applicable with the following additions.

IEC 60265-1:1998, *High-voltage switches – Part 1: Switches for rated voltages above 1 kV and less than 52 kV*

IEC 60694:1996, *Common specifications for high-voltage switchgear and controlgear standards*

IEC 60787:1983, *Application guide for the selection of fuse-links of high-voltage fuses for transformer circuit applications*
