INTERNATIONAL STANDARD

Fuel cell technologies –
Part 6-100: Micro fuel cell power systems – Safety
CONTENTS

FOREWORD .. 9

1 Scope ... 11
 1.1 General .. 11
 1.2 Fuels and technologies covered .. 11
 1.3 Equivalent level of safety .. 11

2 Normative references ... 13

3 Terms and definitions ... 14

4 Materials and construction of micro fuel cell power systems, micro fuel cell power units and fuel cartridges .. 18
 4.1 General .. 18
 4.2 FMEA / hazard analysis ... 18
 4.3 General materials .. 18
 4.4 Selection of materials .. 18
 4.5 General construction ... 19
 4.6 Fuel valves .. 19
 4.7 Materials and construction – system ... 20
 4.8 Ignition sources .. 20
 4.9 Enclosures and acceptance strategies .. 21
 4.9.1 Parts requiring a fire enclosure ... 21
 4.9.2 Parts not requiring a fire enclosure ... 21
 4.9.3 Materials for components and other parts outside fire enclosures 22
 4.9.4 Materials for components and other parts inside fire enclosures 23
 4.9.5 Mechanical enclosures .. 24
 4.10 Protection against fire, explosion, corrosivity and toxicity hazard 24
 4.11 Protection against electrical hazards ... 25
 4.12 Fuel supply construction .. 25
 4.12.1 Fuel cartridge construction .. 25
 4.12.2 Fuel cartridge fill requirement ... 26
 4.13 Protection against mechanical hazards ... 26
 4.13.1 Piping and tubing other than fuel lines ... 26
 4.13.2 Exterior surface and component temperature limits .. 26
 4.13.3 Motors .. 27
 4.14 Construction of electric device components .. 28
 4.14.1 Limited power sources ... 28
 4.14.2 Devices that use electronic controllers ... 29
 4.14.3 Electrical conductors/wiring .. 29
 4.14.4 Output terminal area ... 30
 4.14.5 Electric components and attachments ... 30
 4.14.6 Protection ... 30

5 Abnormal operating and fault conditions testing and requirements 31
 5.1 General .. 31
 5.2 Compliance testing .. 31
 5.3 Passing criteria .. 32
 5.4 Simulated faults and abnormal conditions for limited power and SELV circuits 32
 5.5 Abnormal operation – electromechanical components .. 32
 5.6 Abnormal operation of micro fuel cell power systems or units with integrated batteries .. 33
Figure 5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test ... 41
Figure 6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 68 kPa low external pressure test ... 42
Figure 7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 11.6 kPa low external pressure test .. 43
Figure 8 – Temperature cycling ... 48
Figure 9 – Fuel cartridge leakage and mass loss test flow chart for long-term storage test ... 55
Figure 10 – Operational emission rate testing apparatus .. 60
Figure 11 – Operational emission concentration testing apparatus 60
Figure A.1 – Formic acid micro fuel cell power system block diagram – Replaces Figure 1 ... 64
Figure A.2 – Fuel cartridge leakage and mass loss test flow chart for pressure differential, vibration, drop, and compressive loading tests – Replaces Figure 2 70
Figure A.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 71
Figure A.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss flow chart for pressure differential, vibration, temperature cycling test, drop, and compressive loading tests – Replaces Figure 4 .. 72
Figure A.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 73
Figure A.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 68 kPa low external pressure test – Replaces Figure 6 74
Figure A.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 11.6 kPa low external pressure test – Replaces Figure 7 75
Figure A.9 – Fuel cartridge leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 ... 82
Figure A.10 – Operational emission rate testing apparatus – Replaces Figure 10 83
Figure A.11 – Operational emission concentration testing apparatus – Replaces Figure 11 ... 84
Figure A.12 – Hydrogen emission test procedure for operating micro fuel cell power system .. 92
Figure B.2 – Fuel cartridge leakage test flow chart for pressure differential, vibration, drop, and compressive loading tests – Replaces Figure 2 ... 107
Figure B.3 – Fuel cartridge leakage test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 .. 108
Figure B.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss flow chart for pressure differential, vibration, temperature cycling, drop, and compressive loading tests – Replaces Figure 4 .. 109
Figure B.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 110
Figure B.8 – Temperature cycling – Replaces Figure 8 ... 120
Figure B.9 – Fuel cartridge hydrogen leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 ... 131
Figure B.10 – Operational emission rate testing apparatus – Replaces Figure 10 137
Figure B.12 – Hydrogen emission test procedure for operating micro fuel cell power system .. 141
Figure C.1 – General block diagram of a reformed methanol micro fuel cell power system – Replaces Figure 1 ... 145
Figure C.10 – Operational emission rate testing apparatus – Replaces Figure 10 149
Figure C.11 – Operational emission concentration testing apparatus – Replaces Figure 11 .. 150
Figure C.12 – Hydrogen emission test procedure for operating micro fuel cell power system .. 155
Figure D.1 – Methanol clathrate compound micro fuel cell power system block diagram – Replaces Figure 1 .. 159
Figure D.2 – Fuel cartridge leakage and mass loss test flow chart for pressure differential, vibration, drop, and compressive loading tests – Replaces Figure 2 ... 165
Figure D.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 .. 166
Figure D.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop and compressive loading tests – Replaces Figure 4 .. 167
Figure D.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 .. 168
Figure D.9 – Fuel cartridge leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 .. 179
Figure D.12 – Fuel cartridge of methanol clathrate compound .. 160
Figure D.13 – Usage of methanol clathrate compound with micro fuel cell power unit .. 160
Figure E.1 – Micro fuel cell power system block diagram for liquid Class 8 (corrosive) borohydride compound fuel with onboard fuel processing – Replaces Figure 1 .. 183
Figure E.2 – Fuel cartridge leakage test flow chart for vibration, drop, compressive loading – Replaces Figure 2 .. 197
Figure E.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 .. 198
Figure E.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop and compressive loading tests – Replaces Figure 4 .. 199
Figure E.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 .. 200
Figure E.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 68 kPa low external pressure test – Replaces Figure 6 .. 201
Figure E.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 11.6 kPa low external pressure test – Replaces Figure 7 .. 202
Figure E.8 – Temperature cycling – Replaces Figure 8 .. 207
Figure E.9 – Fuel cartridge hydrogen leakage and mass loss test flowchart for long-term storage test – Replaces Figure 9 .. 213
Figure E.10 – Operational emission hydrogen concentration testing apparatus – Replaces Figure 10 .. 223
Figure E.11 – Operational emission concentration testing apparatus – Replaces Figure 11 .. 223
Figure E.12 – Hydrogen emission test procedure for operating micro fuel cell power system – Replaces Figure 12 .. 230
Figure E.13 – Micro fuel cell power system block diagram for liquid Class 8 (corrosive) borohydride compound fuel with fuel cartridge fuel processing .. 184
Figure E.14 – Micro fuel cell power system block diagram for solid Class 8 (corrosive) borohydride compound fuel with fuel cartridge fuel processing and cartridge fuel management .. 185
Figure E.15 – Micro fuel cell power system block diagram for solid Class 8 (corrosive) compound fuel with cartridge fuel processing and fuel management internal to the micro fuel cell power unit .. 186
Figure E.16 – Fuel cartridge leakage test flow chart for external pressure test .. 231
Figure F.1 – Borohydride micro fuel cell power system block diagram for Class 4.3 (water reactive) compound fuel in indirect borohydride fuel cell system; fuel management in micro fuel cell power unit – Replaces Figure 1 ... 235

Figure F.2 – Fuel cartridge leakage test flow chart for pressure differential, vibration, drop, and compressive loading tests – Replaces Figure 2 ... 247

Figure F.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 ... 248

Figure F.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop and compressive loading tests – Replaces Figure 4 .. 249

Figure F.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 250

Figure F.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, drop and compressive loading tests – Replaces Figure 6 .. 251

Figure F.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop and compressive loading tests – Replaces Figure 7 252

Figure F.8 – Temperature cycling – Replaces Figure 8 ... 257

Figure F.9 – Fuel cartridge leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 ..263

Figure F.10 – Operational emission rate testing apparatus – Replaces Figure 10 273

Figure F.11 – Operational emission concentration testing apparatus – Replaces Figure 11 ... 273

Figure F.12 – Borohydride micro fuel cell power system block diagram for Class 4.3 (water reactive) compound fuel in indirect borohydride fuel cell system; fuel management in fuel cartridge...236

Figure F.13 – Hydrogen emission test procedure for operating micro fuel cell power system. ... 280

Figure F.14 – Fuel cartridge leakage test flow chart for low external pressure test.............. 281

Figure F.1 – Direct borohydride micro fuel cell power system block diagram – Replaces Figure 1 ... 284

Figure G.1 – Direct borohydride micro fuel cell power system block diagram – Replaces Figure 1 ... 284

Figure G.2 – Fuel cartridge leakage test flow chart for pressure differential, vibration, drop, and compressive loading tests – Replaces Figure 2 ... 295

Figure G.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 ... 296

Figure G.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss flow chart for pressure differential, vibration, temperature cycling, drop, and compressive loading tests – Replaces Figure 4 .. 297

Figure G.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5 298

Figure G.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, drop and compressive loading tests – Replaces Figure 6 .. 299

Figure G.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop, and compressive loading tests – Replaces Figure 7 300

Figure G.8 – Temperature cycling – Replaces Figure 8 ... 306

Figure G.9 – Fuel cartridge hydrogen leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 ..211

Figure G.10 – Operational emission rate testing apparatus – Replaces Figure 10 320

Figure G.11 – Operational emission concentration testing apparatus – Replaces Figure 11 .. 321

Figure G.12 – Hydrogen emission test procedure for operating micro fuel cell power system. ... 328
Figure G.13 – Fuel cartridge leakage test flow chart for low external pressure test 301
Figure H.1 – Butane solid oxide micro fuel cell power system block diagram – Replaces Figure 1.. . 331
Figure H.2 – Fuel cartridge leakage and mass loss test flow chart for vibration, drop and compressive loading tests – Replaces Figure 2.. 338
Figure H.3 – Fuel cartridge leakage and mass loss test flow chart for temperature cycling test and high temperature exposure test – Replaces Figure 3 ... 339
Figure H.4 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for pressure differential, vibration, temperature cycling, drop and compressive loading tests – Replaces Figure 4... 340
Figure H.5 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for external short-circuit test – Replaces Figure 5341
Figure H.6 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 68 kPa low external pressure test – Replaces Figure 6 342
Figure H.7 – Micro fuel cell power system or micro fuel cell power unit leakage and mass loss test flow chart for 11,6 kPa low external pressure test – Replaces Figure 7........ 343
Figure H.8 – Temperature cycling – Replaces Figure 8 ... 349
Figure H.9 – Fuel cartridge leakage and mass loss test flow chart for long-term storage test – Replaces Figure 9 .. 356
Figure H.10 – Operational emission rate testing apparatus – Replaces Figure 10 361
Figure H.11 – Operational emission concentration testing apparatus 362

Table 1 – Summary of material flammability requirements... 22
Table 2 – Temperature limits .. 27
Table 3 – Limits for inherently limited power sources .. 28
Table 4 – Limits for power sources not inherently limited (Over-current protection required)... 29
Table 5 – List of type tests36
Table 6 – Laboratory standard conditions ... 37
Table 7 – Emission limits .. 63
Table A.5 – List of type tests – Replaces Table 5... 68
Table A.6 – Laboratory standard conditions – Replaces Table 6 ... 69
Table A.7 – Emission limits – Replaces Table 7 ... 93
Table A.8 – Occupational exposure limits ... 93
Table B.5 – List of type tests – Replaces Table 5... 105
Table B.6 – Laboratory standard conditions – Replaces Table 6.. 106
Table B.7 – Emission limits – Replaces Table 7 ... 142
Table B.8 – Occupational exposure limits ... 142
Table C.5 – List of type tests – Replaces Table 5... 148
Table C.6 – Laboratory standard conditions – Replaces Table 6.. 149
Table C.7 – Emission limits – Replaces Table 7... 156
Table C.8 – Occupational exposure limits ... 156
Table D.5 – List of type tests – Replaces Table 5... 163
Table D.6 – Laboratory standard conditions – Replaces Table 6.. 164
Table E.5 – List of type tests – Replaces table 5... 194
Table E.6 – Laboratory standard conditions – Replaces Table 6 ... 195
Table E.7 – Emission limits – Replaces Table 7 ... 229
Table F.5 – List of type tests – Replaces Table 5 ... 244
Table F.6 – Laboratory standard conditions – Replaces Table 6 .. 245
Table F.7 – Emission limits – Replaces Table 7 ... 279
Table G.5 – List of type tests – Replaces Table 5 ... 292
Table G.6 – Laboratory standard conditions – Replaces Table 6 .. 293
Table G.7 – Emission limits – Replaces Table 7 ... 327
Table H.5 – List of type tests – Replaces Table 5 ... 336
Table H.6 – Laboratory standard conditions – Replaces Table 6 .. 337
Table H.7 – Emission limits – Replaces Table 7 ... 365
Table H.8 – Occupational exposure limits .. 366
INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES –

Part 6-100: Micro fuel cell power systems – Safety

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62282-6-100 has been prepared by IEC technical committee 105: Fuel cell technologies

This standard cancels and replaces IEC/PAS 62282-6-1 published in 2006. This first edition constitutes a technical revision.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>105/255/FDIS</td>
<td>105/261/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
How to use this standard:

The subclauses and clauses of the main body of the text are modified, replaced or applied as they are in each of the annexes, which applies to a different technology. Instructions are written in Italic type.

a) For the methanol, and methanol and water fuels covered by Clauses 1 through 7, all requirements are given in Clauses 1 through 7 and the annexes should not be used for these fuels.

b) For the specific fuels and technologies covered by Annexes A through H, each annex outlines the additional or modified requirements with respect to the requirements contained in Clauses 1 through 7 for certification of such micro fuel cell power systems, micro fuel cell power units and their respective fuel cartridges covered by the specific annex.

c) Where possible, the numbering system of the annexes corresponds to the numbering of Clauses 1 through 7 and their subclauses. Requirements from Clauses 1 through 7 and their subclauses not specifically addressed in an annex apply to the fuels and technologies covered by that particular annex as written in Clauses 1 through 7.

d) Where an annex gives specific subclause direction – preceded by the annex letter designator – those specific subclauses in the annex reflect the additional or modified requirements for the fuels and technologies covered by the particular annex and shall be followed for that annex. Any additional subclauses have been assigned new numbers and shall be followed.

e) Modified or replacement figures or tables have been given modified table or figure designators – based on the figure or table number in Clauses 1 through 7 preceded by the annex letter designator. New figures or tables in the annexes have been given new figure or table designators and shall also be used.

A list of all parts of the IEC 62282 series, under the general title *Fuel cell technologies*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reaffirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

Note: The attention of National Committees is drawn to the fact that equipment manufacturers and testing organizations may need a transitional period following publication of a new, amended or revised IEC publication or one that replaces an existing Publicly Available Specification (PAS) in which to make products in accordance with the new requirements and to equip themselves for conducting new or revised tests.

It is the recommendation of the committee that the content of this publication be adopted for implementation nationally not earlier than 12 months from the date of publication.

In the meantime, IEC/PAS 62282-6-1 can still be ordered by contacting the local IEC member National Committee or the IEC Central Office.

A bilingual version of this publication may be issued at a later date.

The contents of the corrigendum of December 2011 have been included in this copy.
FUEL CELL TECHNOLOGIES –

Part 6-100: Micro fuel cell power systems –
Safety

1 Scope

1.1 General

a) This consumer safety standard covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that are wearable or easily carried by hand, providing d.c. outputs that do not exceed 60 V d.c. and power outputs that do not exceed 240 VA. Portable fuel cell power systems that provide output levels that exceed these electrical limits are covered by IEC 62282-5-1.

b) Externally accessible circuitry is therefore considered to be safety extra low voltage (SELV) circuitry as defined in IEC 60950-1:2005, and as limited power circuits if further compliance with 2.5 of IEC 60950-1:2005 is demonstrated. Micro fuel cell power systems or units that have internal circuitry exceeding 60 V d.c. or 240 VA should be appropriately evaluated in accordance with the separate criteria of IEC 60950-1:2005.

c) This consumer safety standard covers all micro fuel cell power systems, micro fuel cell power units and fuel cartridges. This standard establishes requirements for all micro fuel cell power systems, micro fuel cell power units and fuel cartridges to ensure a reasonable degree of safety for normal use, reasonably foreseeable misuse, and consumer transportation of such items. The fuel cartridges covered by this standard are not intended to be refilled by the consumer. Fuel cartridges refilled by the manufacturer or by trained technicians shall meet all requirements of this standard.

d) These products are not intended for use in hazardous areas as defined by IEV 426-03-01.

1.2 Fuels and technologies covered

a) A micro fuel cell power system block diagram is shown in Figure 1.

b) All portions of this standard, including all annexes, apply to micro fuel cell power systems, micro fuel cell power units and fuel cartridges as defined in Subclause 1.1 above.

c) Clauses 1 through 7 of this standard cover direct methanol fuel cells using methanol or methanol and water solutions as fuel. Clauses 1 through 7 cover specific requirements for direct methanol fuel cells using proton exchange membrane technologies. Clauses 1 through 7 also cover general requirements applicable to all fuel cell technologies and all fuels covered in Annexes A through H.

d) Annexes A through H cover fuels and fuel cell technologies as follows.

1) Annex A covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that use formic acid in water solutions — that are comprised of less than 85 % formic acid by weight — as fuel. These systems and units use direct formic acid fuel cell technologies.

2) Annex B covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that use hydrogen gas — that has been stored in a hydrogen absorbing metal alloy — as fuel. These systems and units use proton exchange membrane fuel cell technologies.

3) Annex C covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that convert methanol or methanol and water solutions through a reformer into hydrogen rich methanol reformate — which is then immediately fed to the fuel cell or fuel cell stack — as fuel. These systems and units use proton exchange membrane fuel cell technologies.
4) Annex D covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that use methanol or methanol and water solutions – derived from methanol clathrate compounds – as fuel. These systems and units use direct methanol fuel cell technologies.

5) Annex E covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges using hydrogen produced from Class 8 (corrosive) borohydride compounds as fuel. These systems and units use proton exchange membrane fuel cell technologies. The designs may include fuel processing subsystems to derive hydrogen gas from the borohydride compound fuel.

6) Annex F covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges using hydrogen produced from Class 4.3 (water reactive) borohydride compounds as fuel. These systems and units use proton exchange membrane fuel cell technologies. The designs may include fuel processing subsystems to derive hydrogen gas from the borohydride compound fuel.

7) Annex G covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that use Class 8 (corrosive) borohydride compounds as fuel. These systems and units use direct borohydride fuel cell technologies.

8) Annex H covers micro fuel cell power systems, micro fuel cell power units and fuel cartridges that use butane and butane/propane mixtures – consisting of at least 75% butane by mass – as fuel. These systems and units use solid oxide fuel cell technologies.

Figure 1 – Micro fuel cell power system block diagram
1.3 Equivalent level of safety

a) The requirements of this standard are not intended to constrain innovation. The manufacturer may consider fuels, materials, designs or constructions not specifically dealt with in this standard. These alternatives should be evaluated as to their ability to yield levels of safety equivalent to those prescribed by this standard.

b) It is understood that all micro fuel cell power systems, micro fuel cell power units and fuel cartridges shall comply with applicable country and local requirements including, but not limited to, those concerning transportation, child-resistance and storage, where required.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60086-4, Primary batteries – Part 4: Safety of lithium batteries

IEC 60086-5, Primary batteries – Part 5: Safety of batteries with aqueous electrolyte

IEC 60695-1-1: Fire hazard testing – Part 1-1: Guidance for assessing the fire hazard of electrotechnical products – General guidelines

IEC 60695-2-11, Fire hazard testing – Part 2-11: Glowing/hot-wire based test methods – Glow-wire flammability test method for end-products

IEC 60695-11-10, Fire hazard testing – Part 11-10: Test flames – 50 W horizontal and vertical flame test methods

IEC 60730-1:1999, Automatic electrical controls for household and similar use – Part 1: General requirements
 Amendment 1 (2003)
 Amendment 2 (2007)

IEC 61032:1997, Protection of persons and equipment by enclosures – Probes for verification

IEC 62133:2002, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications

IEC 62281:2004, Safety of primary and secondary lithium cells and batteries during transport

ISO 175, Plastics – Methods of test for determination of the effects of immersion in liquid chemicals

ISO 188, Rubber, vulcanized or thermoplastic – Accelerated ageing and heat resistance tests

ISO 1817, Rubber, vulcanized – Determination of the effect of liquids

ISO 9772, *Cellular plastics – Determination of horizontal burning characteristics of small specimens subjected to a small flame*

ISO 15649, *Petroleum and natural gas industries – Piping*

ISO 16000-3, *Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds – Active sampling method*

ISO 16000-6, *Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID*