Power systems management and associated information exchange – Data and communications security –
Part 12: Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems
CONTENTS

FOREWORD ... 6
INTRODUCTION ... 8

1 Scope ... 10
2 Normative references ... 10
3 Terms and definitions ... 11
4 Abbreviations and acronyms .. 12
5 DER architectures and DER cyber-physical concepts ... 13
 5.1 Resiliency challenge for power systems with DER systems 13
 5.2 Five-level DER hierarchical architecture ... 14
 5.3 DER system interfaces .. 17
 5.4 Resilience at different DER architectural levels .. 18
 5.5 DER Systems as cyber-physical systems ... 19
 5.5.1 Protecting cyber-physical DER systems .. 19
 5.5.2 Cyber-physical threats .. 20
 5.5.3 Resilience measures for cyber-physical systems 21
6 Threats, vulnerabilities, and impacts on power system resilience 23
 6.1 Threats – engineering and cyber .. 23
 6.1.1 Physical and electrical threats – mostly but not entirely inadvertent 23
 6.1.2 Cyber threats – inadvertent and deliberate .. 23
 6.2 Vulnerabilities – engineering and cyber vulnerabilities 26
 6.2.1 General ... 26
 6.2.2 Power system vulnerabilities and attacks .. 26
 6.2.3 Cyber security vulnerabilities and attacks .. 28
 6.3 Risk management and mitigation techniques .. 30
 6.3.1 Risk handling ... 30
 6.3.2 Risk mitigation categories ... 31
 6.4 Impacts on power system resilience ... 33
 6.4.1 Safety impacts .. 33
 6.4.2 Power outage impacts .. 34
 6.4.3 Power quality impacts ... 35
 6.4.4 Financial impacts ... 35
 6.4.5 Regulatory and legal impacts ... 36
 6.4.6 Environmental impacts .. 36
 6.4.7 Goodwill and other “soft” impacts .. 36
 6.5 DER stakeholders’ resilience responsibilities .. 36
 6.6 Resilience Measures for DER systems to counter threats 37
 6.6.1 General IT cyber security approach for DER systems 37
 6.6.2 Resilience by engineering designs and operational strategies 38
7 Level 1 DER System resilience recommendations .. 38
 7.1 General .. 38
 7.2 Level 1 DER system: architecture ... 38
 7.3 Level 1 DER system: vulnerabilities ... 40
 7.3.1 General ... 40
 7.3.2 Cyber vulnerabilities .. 40
 7.3.3 Engineering design and development vulnerabilities 40
7.3.4 Deployment and operational vulnerabilities ... 41
7.4 Level 1 DER system: impacts .. 41
7.5 Level 1 DER system: resilience recommendations ... 44
 7.5.1 General ... 44
 7.5.2 Manufacturer: DER system design for resilience recommendations 44
 7.5.3 Integrator and installer: DER setup for meeting resilience recommendations ... 45
 7.5.4 Testing personnel: resilient DER system interconnection testing recommendations .. 45
 7.5.5 DER user: access recommendations .. 47
 7.5.6 ICT designers: requirements for local DER communications 48
 7.5.7 Security managers: alarming, logging, and reporting cyber security recommendations ... 50
 7.5.8 Maintenance personnel: resilience recommendations for maintenance, updating and re-testing, systems .. 50
 7.5.9 Recommended coping actions during an attack or failure 51
 7.5.10 Recommended recovery and analysis actions after an attack or failure 52
8 Level 2: Facilities DER energy management (FDEMS) resilience recommendations .. 52
 8.1 Level 2 FDEMS: architecture ... 52
 8.2 Level 2 FDEMS: Vulnerabilities ... 54
 8.3 Level 2 FDEMS: Impacts .. 54
 8.4 Level 2 FDEMS: Resilience recommendations .. 56
 8.4.1 General ... 56
 8.4.2 Manufacturer: Design of FDEMS resilience recommendations 56
 8.4.3 Integrators and installer: FDEMS implementation for meeting resilience recommendations ... 57
 8.4.4 Testing personnel: Resilient FDEMS testing recommendations 60
 8.4.5 FDEMS users: Access recommendations .. 60
 8.4.6 FDEMS ICT designers: Resilience recommendations 61
 8.4.7 Security managers: Alarming, logging, and reporting recommendations 63
 8.4.8 Maintenance personnel: Resilience recommendations for maintenance, updating and re-testing, systems ... 63
 8.4.9 Recommended coping actions during an attack or failure 64
 8.4.10 Recommended recovery and analysis actions after an attack or failure 65
9 Level 3: Third parties: Retail energy provider or aggregators resilience recommendations .. 66
 9.1 Level 3: Third parties: ICT architecture ... 66
 9.2 Level 3: Third parties: ICT vulnerabilities ... 67
 9.3 Level 3: Third parties: ICT impacts .. 68
 9.4 Level 3: Third parties ICT: Resilience recommendations 69
 9.4.1 Third party ICT designers: Resilience recommendations 69
 9.4.2 ICT users: Access recommendations .. 71
10 Level 4: Distribution operations analysis resilience recommendations 72
 10.1 Level 4 DSO analysis: Architecture ... 72
 10.2 Level 4 DSO analysis: Vulnerabilities .. 73
 10.3 Level 4 DSO analysis: Impacts ... 74
 10.4 Level 4 DSO analysis: Resilience recommendations .. 76
 10.4.1 Resilient design of distribution grid equipment with DER systems 76
 10.4.2 Resilience through DSO grid operations with DER systems 76
Table 5 – Level 2 impact severities due to malicious attacks and failures of FDEMS

Table 6 – Level 3 impact severities due to malicious attacks and failures of DER ICT

Table 7 – Level 4 impact severities due to malicious attacks and failures of DMS or DERMS

Table A.1 – NIST Smart Grid Security Requirements Families

Table A.2 – Detailed NIST Catalogue of Smart Grid Security Requirements

Table C.1 – Mapping between IEC 62443-3-3, NISTIR 7628, and IEC TR 62351-12

Table C.2 – IEC 62351-12 cyber security items not mapped to all guidelines
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 62351-12, which is a technical report, has been prepared by IEC technical committee 57: Power systems management and associated information exchange.
The text of this technical report is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/1637/DTR</td>
<td>57/1664/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62351 series, under the general title: *Power systems management and associated information exchange – Data and communications security*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

Resilience and Cyber Security

In the energy sector, two key phrases are becoming the focus of international and national policies: “grid resilience” and “cyber security of the cyber-physical grid”. Grid resilience responds to the overarching concern: "The critical infrastructure, the Smart Electric Grid, must be resilient – to be protected against both physical and cyber problems when possible, but also to cope with and recover from the inevitable disruptive event, no matter what the cause of that problem is – cyber, physical, malicious, or inadvertent."

"Grid resilience … includes hardening, advanced capabilities, and recovery/reconstitution. Although most attention is placed on best practices for hardening, resilience strategies must also consider options to improve grid flexibility and control."¹ Resilience of the grid is often associated with making the grid able to withstand and recover from severe weather and other physical events, but resilience should also include the ability of the cyber-physical grid to withstand and recover from malicious and inadvertent cyber events.

Resilience, sometimes defined as “the fast recovery with continued operations from any type of disruption” can be applied to the power system critical infrastructure. A resilient power system is designed and operated not only to prevent and withstand malicious attacks and inadvertent failures, but also to detect, assess, cope with, recover from, and eventually analyze such attacks and failures in a timely manner while continuing to respond to any additional threats.

The “cyber-physical grid” implies that the power system consists of both cyber and physical assets that are tightly intertwined. Both the cyber assets and the physical assets must be protected in order for the grid to be resilient. But protection of these assets is not enough: these cyber and physical assets must also be used in combination to cope with and recover from both cyber and physical attacks into order to truly improve the resilience of the power system infrastructure.

Background to Resilience Issues

All too often, cyber security experts concentrate only on traditional “IT cyber security” for protecting the cyber assets, without focusing on the overall resilience of the physical systems. At the same time, power system experts concentrate only on traditional “power system security” based on the engineering design and operational strategies that keep the physical and electrical assets safe and functioning correctly, without focusing on the security of the cyber assets. However, the two must be combined: resilience of the overall cyber-physical system must include tightly entwined cyber security technologies and physical asset engineering and operations, combined with risk management to ensure appropriate levels of mitigation strategies.

As an example, distributed energy resources (DER) systems are cyber-physical systems that are increasingly being interconnected to the distribution power system to provide energy and ancillary services. However, distribution power systems were not originally designed to handle these dispersed sources of generation, while DER systems are generally not under direct utility management or under the security policies and procedures of the utilities. Many DER systems provide energy from renewable sources, which are not reliably available at all times. Therefore, the resilience of power systems to even typical disruptions is increasingly at risk as more of these DER systems are interconnected.

On the other hand, the sophisticated cyber-physical capabilities of smart DER systems could actually improve power system resilience if these smart DER capabilities were properly secure and coordinated with power system management through communications. DER systems can actually compensate for some of the problems they cause, such as riding through temporary spikes and dips in voltage or frequency that could be caused by their fluctuating behavior. DER functions such as volt-VAr management can smooth these fluctuations as well. In addition, networked DER systems (e.g. microgrids), and the bulk power system can serve as mutual backups during excessive peak loads or during disaster conditions. As illustrated in Figure 1, if both the cyber and the physical components of these DER systems were well designed and implemented with embedded cyber security, and were interconnected and operated using good engineering strategies, they would significantly improve the resilience of the power system.

It is not just the utilities who must take responsibility for achieving this resilience goal. Many stakeholders are involved in the design, implementation, and operation of DER systems, including manufacturers, integrator/installers, users, information and communication technology (ICT) providers, security managers, testing and maintenance personnel, and ultimately utility regulators. However, given this new cyber-physical environment, often these stakeholders do not fully understand or appreciate the types of cyber security and engineering strategies that could or should be used.
POWER SYSTEMS MANAGEMENT AND ASSOCIATED INFORMATION EXCHANGE – DATA AND COMMUNICATIONS SECURITY –

Part 12: Resilience and security recommendations for power systems with distributed energy resources (DER) cyber-physical systems

1 Scope

This part of IEC 62351, which is a technical report, discusses cyber security recommendations and engineering/operational strategies for improving the resilience of power systems with interconnected Distributed Energy Resources (DER) systems. It covers the resilience requirements for the many different stakeholders of these dispersed cyber-physical generation and storage devices, with the goal of enhancing the safety, reliability, power quality, and other operational aspects of power systems, particularly those with high penetrations of DER systems.

The focus of this technical report is describing the impact of DER systems on power system resilience, and covers the cyber security and engineering strategies for improving power system resilience with high penetrations of DER systems.

While recognizing that many other requirements exist for improving power system resilience, this technical report does not address general power system configurations, operations, manual power restoration activities or the many other non-DER-specific issues. For instance, power system reliability relies on well-coordinated protective relays, stable power system designs, and well-trained field crews, while control center cyber security relies on many best practices for communication network design and firewalls. However, this technical report only addresses the additional reliability and resilience issues caused by 3rd-party managed DER systems which may not be as well-secured or operated with the same reliability as the utility-managed power system.

This technical report discusses the resilience issues for cyber-physical DER systems interconnected with the power grid, building on the concepts and the hierarchical architecture described in the Smart Grid Interoperability Panel (SGIP) draft DRGS Subgroup B White Paper – Categorizing Use Cases in Hierarchical DER Systems 01-14-2014.docx.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 62351-9, Power systems management and associated information exchange – Data and communications security – Part 9: Cyber security key management for power system equipment

Under consideration.
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE For the sake of transparency certain terms, taken from different sources, are provided with slightly different definitions in Annex D, Glossary of terms.

3.1 anti-islanding
detecting an island and ceasing to energize that island

3.2 cease to energize
cessation of energy outflow capability

[SOURCE: IEEE 1547:2003]

3.3 cyber-physical systems
engineered systems that are built from and depend upon the synergy of computational and physical components

[SOURCE: National Science Foundation]

3.4 electric power system
EPS
facilities that deliver electric power to a load

Note 1 to entry: This may include generation units.

[SOURCE: IEEE 1547:2003]

3.5 electric power system, area
area EPS
electric power system (EPS) that serves Local EPSs

Note 1 to entry: Typically, an Area EPS has primary access to public rights-of-way, priority crossing of property boundaries, etc. and is subject to regulatory oversight.

[SOURCE: IEEE 1547:2003]

3.6 electric power system, local
local EPS
EPS contained entirely within a single premises or group of premises

[SOURCE: IEEE 1547:2003]