Hydraulic machines – Guidelines for dealing with hydro-abrasive erosion in kaplan, francis, and pelton turbines
CONTENTS

FOREWORD .. 6

INTRODUCTION ... 8

1 Scope ... 9

2 Terms, definitions and symbols .. 9

3 Abrasion rate Prediction of hydro-abrasive erosion rate .. 13
 3.1 Model for hydro-abrasive erosion depth .. 13
 3.2 Reference model .. 15
 3.3 Simplified hydro-abrasive erosion evaluation ... 15

4 Design ... 16
 4.1 General .. 16
 4.2 Selection of abrasion resistant materials with high resistance to hydro-abrasive erosion and coating 17
 4.3 Stainless steel overlays .. 18
 4.4 Water conveyance system .. 18
 4.5 Valve .. 18
 4.5.1 General ... 18
 4.5.2 Protection (closing) of the gap between housing and trunnion ... 19
 4.5.3 Stops located outside the valve ... 19
 4.5.4 Proper capacity of inlet valve operator ... 19
 4.5.5 Increase bypass size to allow higher guide vane leakage .. 20
 4.5.6 Bypass system design .. 20
 4.6 Turbine ... 20
 4.6.1 General ... 20
 4.6.2 Hydraulic design .. 20
 4.6.3 Mechanical design ... 22

5 Operation and maintenance ... 29
 5.1 Operation .. 29
 5.2 Spares and regular inspections ... 30
 5.3 Particle sampling and monitoring .. 30

6 Abrasion resistant materials Materials with high resistance to hydro-abrasive erosion 32
 6.1 Guidelines concerning relative abrasion hydro-abrasive erosion resistance of materials including abrasion hydro-abrasive erosion resistant coatings .. 32
 6.1.1 General ... 32
 6.1.2 Discussion and conclusions .. 33
 6.2 Guidelines concerning maintainability of abrasion hydro-abrasive erosion resistant coating materials ... 34
 6.2.1 Definition of terms used in this subclause ... 34
 6.2.2 Time between overhaul for protective coatings ... 34
 6.2.3 Maintenance Repair of protective coatings .. 36

7 Guidelines on insertions into specifications ... 37
 7.1 General .. 37
 7.2 Properties of particles going through the turbine ... 38
 7.3 Size distribution of particles ... 39
 Mineral composition of particles for each of the above mentioned periods .. 41

Annex A (informative) PL calculation example .. 41
Annex B (informative) Measuring and recording abrasion hydro-abrasive erosion damages

B.1	Recording abrasion hydro-abrasive erosion damage	43
B.2	Pelton runner without coating	44
B.3	Needle tip and mouth piece without coating	44
B.4	Pelton runner with hardcoating	44
B.5	Needle tip, seat ring and nozzle housing with coating	44
B.6	Francis runner and stationary labyrinth without coating	45
B.7	Francis runner with coating and stationary labyrinth	45
B.8	Guide vanes and facing plates without coating	46
B.9	Guide vanes and facing plates with coating	46
B.10	Stay vanes	46
B.11	Francis labyrinth seals uncoated	47
B.12	Kaplan uncoated	47
B.13	Kaplan coated	47
B.14	Sample data sheets	47
B.15	Inspection record, runner blade inlet	49
B.16	Inspection record, runner blade outlet	50
B.17	Inspection record, runner band	51
B.18	Inspection record, guide vanes	52
B.19	Inspection record, facing plates and covers	53
B.20	Inspection record, upper stationary seal	54
B.21	Inspection record, upper rotating seal	55
B.22	Inspection record, lower stationary seal	56
B.23	Inspection record, lower rotating seal	57
B.24	Inspection record, runner bucket	58
B.25	Inspection record, Pelton runner splitter	59

Annex C (informative) Monitoring of particle concentration and properties and water sampling procedure

C.1	General	60
C.2	Sampling before building a power station	60
C.3	Sampling in existing power stations	61
C.4	Logging of samples	61

Annex D (informative) Procedures for analysis of particle concentration, size, hardness and shape

D.1	General	62
D.2	Particle concentration	62
D.3	Particle size distribution	62
D.4	Mineralogical composition of the particles	62
D.5	Particle geometry	63

Annex E (informative) Tests of abrasion resistant materials

Annex F (informative) Frequency of sediment sampling

Annex F (informative) Typical criteria to determine overhaul time due to abrasion hydro-abrasive erosion

F.1	General	77
F.2	Parameters which are observable while the unit is in operation	77
F.3	Criteria that require internal inspection of the unit	78

Annex G (informative) Example to calculate the amount of erosion in the full model the hydro-abrasive erosion depth

This is a preview - click here to buy the full publication
Annex H (informative) Examples to calculate the TBO in the reference model..............81
Annex I (informative) Background for hydro-abrasive erosion depth model84
 I.1 Theoretical model Model background and derivation..84
 I.2 Introduction to the PL variable..85
 I.3 Survey results Calibration of the formula..88
Annex J (informative) Quality control of thermal sprayed WC-CoCr...........................89
 J.1 Specification..89
 J.2 Quality control...89
Bibliography..90

Figure – Development of spiral pressure over time...1
Figure 1 – Estimation of the characteristic velocities in guide vanes, W_{gv}, and runner, W_{run}, as a function of turbine specific speed ..13
Figure 2 – Simplified evaluation of risk of hydro-abrasive erosion for first assessment ...15
Figure 3 – Example of protection of transition area ..17
Figure 4 – Runner blade overhang in refurbishment project19
Figure 5 – Example of “mouse ear” cavitation on runner band due to thicker blades20
Figure 6 – Detailed Example of design of guide vane trunnion seals21
Figure 7 – Example of fixing of facing plates from the dry side (bolt to the left)23
Figure 8 – Head cover balancing pipes with bends...24
Figure 9 – Step labyrinth with optimized shape for hardcoating..................................26
Figure 10 – Sample plot of particle concentration versus time29
Figure D.1 – Typical examples of particle geometry..58
Figure I.1 – Example of flow pattern in a Pelton injector at different load71

Table – Form for mineral composition of particles for each of the above mentioned periods

 Table 1 – Values of K_f and p for various components ...13
 Table 2 – Overview over the feasibility for repair C on site.....................................32
 Table 3 – Form for properties of particles going through the turbine34
 Table 4 – Form for size distribution of particles..35
 Table A.1 – Example of documenting sample tests ...36
 Table A.2 – Example of documenting sample results ...37
 Table B.1 – Inspection record, runner blade inlet form ...43
 Table B.2 – Inspection record, runner blade outlet form ...44
 Table B.3 – Inspection record, runner band form...45
 Table B.4 – Inspection record, guide vanes form...46
 Table B.5 – Inspection record, facing plates and covers form47
 Table B.6 – Inspection record, upper stationary seal form48
 Table B.7 – Inspection record, upper rotating seal form ...49
 Table B.8 – Inspection record, lower stationary seal form50
 Table B.9 – Inspection record, lower rotating seal form ...51
 Table B.10 – Inspection record, runner bucket..52
 Table B.11 – Inspection record, Pelton runner splitter ..53
Table G.1 – Calculations...65
Table H.1 – Pelton turbine calculation example..66
Table H.2 – Francis turbine calculation example ...67
Table I.1 – Data analysis of the supplied questionnaire Analysis of the calibration constant K_f and p...73
Table J.1 – Recommended items to include in HVOF inspection ..74
HYDRAULIC MACHINES –
GUIDELINES FOR DEALING WITH HYDRO-ABRASIVE
EROSION IN KAPLAN, FRANCIS, AND PELTON TURBINES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.
International Standard IEC 62364 has been prepared by IEC technical committee 4: Hydraulic turbines.

This second edition cancels and replaces the first edition published in 2013. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) the formula for TBO in Pelton reference model has been modified;
b) the formula for calculating sampling interval has been modified;
c) the chapter in hydro-abrasive erosion resistant coatings has been substantially modified;
d) the annex with test data for hydro-abrasive erosion resistant materials has been removed;
e) a simplified hydro-abrasive erosion evaluation has been added.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/351/FDIS</td>
<td>4/366/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

Many owners of hydroelectric plants contend with the sometimes very aggressive deterioration of their machines due to particle abrasion. Such owners must find the means to communicate to potential suppliers of machines for their sites, their desire to have the particular attention of the designers at the turbine design phase, directed to the minimization of the severity and effects of particle abrasion.

The number of hydro power plants with hydro-abrasive erosion is increasing worldwide.

An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the hydro-abrasive erosion and the impact on the operation. For this, the influencing parameters and their impact on the hydro-abrasive erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, the reservoir sedimentation and the power plant owner's framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done.

Based on this evaluation of the hydro-abrasive erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more hydro-abrasive erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. This analysis is best performed by the overall plant designer.

With regards to the machines, owners should find the means to communicate to potential suppliers for their sites, their desire to have the particular attention of the designers at the turbine design phase, directed to the minimization of the severity and effects of hydro-abrasive erosion.

Limited consensus and very little quantitative data exists on the steps which the designer could and should take to extend the useful life before major overhaul of the turbine components when they are operated under severe particle abrasion hydro-abrasive erosion service. This has led some owners to write into their specifications, conditions which cannot be met with known methods and materials.
1 Scope

This document gives guidelines for:

a) presenting data on particle abrasion hydro-abrasive erosion rates on several combinations of water quality, operating conditions, component materials, and component properties collected from a variety of hydro sites;

b) developing guidelines for the methods of minimizing particle abrasion hydro-abrasive erosion by modifications to hydraulic design for clean water. These guidelines do not include details such as hydraulic profile shapes which should be determined by the hydraulic design experts for a given site;

c) developing guidelines based on “experience data” concerning the relative resistance of materials faced with particle abrasion hydro-abrasive erosion problems;

d) developing guidelines concerning the maintainability of abrasion-resistant materials with high resistance to hydro-abrasive erosion and hard facing coatings;

e) developing guidelines on a recommended approach, which owners could and should take to ensure that specifications communicate the need for particular attention to this aspect of hydraulic design at their sites without establishing criteria which cannot be satisfied because the means are beyond the control of the manufacturers;

f) developing guidelines concerning operation mode of the hydro turbines in water with particle materials to increase the operation life.

It is assumed in this document that the water is not chemically aggressive. Since chemical aggressiveness is dependent upon so many possible chemical compositions, and the materials of the machine, it is beyond the scope of this document to address these issues.

It is assumed in this document that cavitation is not present in the turbine. Cavitation and abrasion hydro-abrasive erosion can reinforce each other so that the resulting erosion is larger than the sum of cavitation erosion plus abrasion hydro-abrasive erosion. The quantitative relationship of the resulting abrasion hydro-abrasive erosion is not known and it is beyond the scope of this document to assess it, except to recommend that special efforts be made in the turbine design phase to minimize cavitation.

Large solids (e.g. stones, wood, ice, metal objects, etc.) traveling with the water may impact turbine components and produce damage. This damage may in turn increase the flow turbulence thereby accelerating wear by both cavitation and abrasion hydro-abrasive erosion. Abrasion resistant coatings can also be damaged locally by impact of large solids. It is beyond the scope of this document to address these issues.

This document focuses mainly on hydroelectric powerplant equipment. Certain portions may also be applicable to other hydraulic machines.
Hydraulic machines – Guidelines for dealing with hydro-abrasive erosion in kaplan, francis, and pelton turbines

Machines hydrauliques – Lignes directrices relatives au traitement de l’érosion hydro-abrasive des turbines kaplan, francis et pelton
CONTENTS

FOREWORD ... 5
INTRODUCTION .. 7
1 Scope .. 8
2 Terms, definitions and symbols .. 8
3 Prediction of hydro-abrasive erosion rate ... 12
 3.1 Model for hydro-abrasive erosion depth .. 12
 3.2 Reference model ... 13
 3.3 Simplified hydro-abrasive erosion evaluation .. 14
4 Design ... 15
 4.1 General ... 15
 4.2 Selection of materials with high resistance to hydro-abrasive erosion and coating 15
 4.3 Stainless steel overlays .. 16
 4.4 Water conveyance system .. 16
 4.5 Valve ... 17
 4.5.1 General ... 17
 4.5.2 Protection (closing) of the gap between housing and trunnion .. 17
 4.5.3 Stops located outside the valve .. 17
 4.5.4 Proper capacity of inlet valve operator .. 18
 4.5.5 Increase bypass size to allow higher guide vane leakage .. 18
 4.5.6 Bypass system design .. 18
 4.6 Turbine ... 18
 4.6.1 General ... 18
 4.6.2 Hydraulic design .. 18
 4.6.3 Mechanical design .. 20
5 Operation and maintenance .. 26
 5.1 Operation ... 26
 5.2 Spares and regular inspections ... 28
 5.3 Particle sampling and monitoring .. 28
6 Materials with high resistance to hydro-abrasive erosion .. 29
 6.1 Guidelines concerning relative hydro-abrasive erosion resistance of materials including hydro-abrasive erosion resistant coatings ... 29
 6.1.1 General ... 29
 6.1.2 Discussion and conclusions ... 30
 6.2 Guidelines concerning maintainability of hydro-abrasive erosion resistant coating materials .. 30
 6.2.1 Definition of terms used in this subclause .. 30
 6.2.2 Time between overhaul for protective coatings .. 30
 6.2.3 Repair of protective coatings .. 31
7 Guidelines on insertions into specifications .. 32
 7.1 General ... 32
 7.2 Properties of particles going through the turbine .. 33
 7.3 Size distribution of particles ... 34
Annex A (informative) PL calculation example .. 35
Annex B (informative) Measuring and recording hydro-abrasive erosion damages 37
 B.1 Recording hydro-abrasive erosion damage ... 37
<table>
<thead>
<tr>
<th>Annex</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2</td>
<td>Pelton runner without coating</td>
<td>37</td>
</tr>
<tr>
<td>B.3</td>
<td>Needle tip and mouth piece without coating</td>
<td>38</td>
</tr>
<tr>
<td>B.4</td>
<td>Pelton runner with hardcoating</td>
<td>38</td>
</tr>
<tr>
<td>B.5</td>
<td>Needle tip, seat ring and nozzle housing with coating</td>
<td>38</td>
</tr>
<tr>
<td>B.6</td>
<td>Francis runner and stationary labyrinth without coating</td>
<td>39</td>
</tr>
<tr>
<td>B.7</td>
<td>Francis runner with coating and stationary labyrinth</td>
<td>39</td>
</tr>
<tr>
<td>B.8</td>
<td>Guide vanes and facing plates without coating</td>
<td>39</td>
</tr>
<tr>
<td>B.9</td>
<td>Guide vanes and facing plates with coating</td>
<td>40</td>
</tr>
<tr>
<td>B.10</td>
<td>Stay vanes</td>
<td>40</td>
</tr>
<tr>
<td>B.11</td>
<td>Francis labyrinth seals uncoated</td>
<td>40</td>
</tr>
<tr>
<td>B.12</td>
<td>Kaplan uncoated</td>
<td>40</td>
</tr>
<tr>
<td>B.13</td>
<td>Kaplan coated</td>
<td>41</td>
</tr>
<tr>
<td>B.14</td>
<td>Sample data sheets</td>
<td>41</td>
</tr>
<tr>
<td>B.15</td>
<td>Inspection record, runner blade inlet</td>
<td>42</td>
</tr>
<tr>
<td>B.16</td>
<td>Inspection record, runner blade outlet</td>
<td>43</td>
</tr>
<tr>
<td>B.17</td>
<td>Inspection record, runner band</td>
<td>44</td>
</tr>
<tr>
<td>B.18</td>
<td>Inspection record, guide vanes</td>
<td>45</td>
</tr>
<tr>
<td>B.19</td>
<td>Inspection record, facing plates and covers</td>
<td>46</td>
</tr>
<tr>
<td>B.20</td>
<td>Inspection record, upper stationary seal</td>
<td>47</td>
</tr>
<tr>
<td>B.21</td>
<td>Inspection record, upper rotating seal</td>
<td>48</td>
</tr>
<tr>
<td>B.22</td>
<td>Inspection record, lower stationary seal</td>
<td>49</td>
</tr>
<tr>
<td>B.23</td>
<td>Inspection record, lower rotating seal</td>
<td>50</td>
</tr>
<tr>
<td>B.24</td>
<td>Inspection record, runner bucket</td>
<td>51</td>
</tr>
<tr>
<td>B.25</td>
<td>Inspection record, Pelton runner splitter</td>
<td>52</td>
</tr>
<tr>
<td>C.1</td>
<td>General</td>
<td>53</td>
</tr>
<tr>
<td>C.2</td>
<td>Sampling before building a power station</td>
<td>53</td>
</tr>
<tr>
<td>C.3</td>
<td>Sampling in existing power stations</td>
<td>54</td>
</tr>
<tr>
<td>C.4</td>
<td>Logging of samples</td>
<td>54</td>
</tr>
<tr>
<td>D.1</td>
<td>General</td>
<td>55</td>
</tr>
<tr>
<td>D.2</td>
<td>Particle concentration</td>
<td>55</td>
</tr>
<tr>
<td>D.3</td>
<td>Particle size distribution</td>
<td>55</td>
</tr>
<tr>
<td>D.4</td>
<td>Mineralogical composition</td>
<td>55</td>
</tr>
<tr>
<td>D.5</td>
<td>Particle geometry</td>
<td>55</td>
</tr>
<tr>
<td>E.1</td>
<td>Frequency of sediment sampling</td>
<td>58</td>
</tr>
<tr>
<td>F.1</td>
<td>General</td>
<td>59</td>
</tr>
<tr>
<td>F.2</td>
<td>Parameters which are observable while the unit is in operation</td>
<td>59</td>
</tr>
<tr>
<td>F.3</td>
<td>Criteria that require internal inspection of the unit</td>
<td>60</td>
</tr>
<tr>
<td>G.1</td>
<td>Example to calculate the hydro-abrasive erosion depth</td>
<td>61</td>
</tr>
<tr>
<td>H.1</td>
<td>Examples to calculate the TBO in the reference model</td>
<td>63</td>
</tr>
<tr>
<td>I.1</td>
<td>Background for hydro-abrasive erosion depth model</td>
<td>66</td>
</tr>
<tr>
<td>I.2</td>
<td>Introduction to the PL variable</td>
<td>67</td>
</tr>
<tr>
<td>I.3</td>
<td>Calibration of the formula</td>
<td>69</td>
</tr>
</tbody>
</table>
Annex J (informative) Quality control of thermal sprayed WC-CoCr

J.1 Specification
J.2 Quality control

Bibliography

Figure 1 – Estimation of the characteristic velocities in guide vanes, \(\text{W}_{\text{gv}} \), and runner, \(\text{W}_{\text{run}} \), as a function of turbine specific speed

Figure 2 – Simplified evaluation of risk of hydro-abrasive erosion for first assessment

Figure 3 – Example of protection of transition area

Figure 4 – Runner blade overhang in refurbishment project

Figure 5 – Example of cavitation on runner band due to thicker blades

Figure 6 – Example of design of guide vane trunnion seals

Figure 7 – Example of fixing of facing plates from the dry side (bolt to the left)

Figure 8 – Head cover balancing pipes with bends

Figure 9 – Step labyrinth with optimized shape for hardcoating

Figure 10 – Sample plot of particle concentration versus time

Figure D.1 – Typical examples of particle geometry

Figure I.1 – Example of flow pattern in a Pelton injector at different load

Table 1 – Values of \(K_f \) and \(p \) for various components

Table 2 – Overview over the feasibility for repair C on site

Table 3 – Form for properties of particles going through the turbine

Table 4 – Form for size distribution of particles

Table A.1 – Example of documenting sample tests

Table A.2 – Example of documenting sample results

Table B.1 – Inspection record, runner blade inlet form

Table B.2 – Inspection record, runner blade outlet form

Table B.3 – Inspection record, runner band form

Table B.4 – Inspection record, guide vanes form

Table B.5 – Inspection record, facing plates and covers form

Table B.6 – Inspection record, upper stationary seal form

Table B.7 – Inspection record, upper rotating seal form

Table B.8 – Inspection record, lower stationary seal form

Table B.9 – Inspection record, lower rotating seal form

Table B.10 – Inspection record, runner bucket

Table B.11 – Inspection record, Pelton runner splitter

Table G.1 – Calculations

Table H.1 – Pelton turbine calculation example

Table H.2 – Francis turbine calculation example

Table I.1 – Analysis of the calibration constant \(K_f \) and \(p \)

Table J.1 – Recommended items to include in HVOF inspection
INTERNATIONAL ELECTROTECHNICAL COMMISSION

HYDRAULIC MACHINES –
GUIDELINES FOR DEALING WITH HYDRO-ABRASIVE EROSION IN KAPLAN, FRANCIS, AND PELTON TURBINES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, TechnicalSpecifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62364 has been prepared by IEC technical committee 4: Hydraulic turbines.

This second edition cancels and replaces the first edition published in 2013. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) the formula for TBO in Pelton reference model has been modified;
b) the formula for calculating sampling interval has been modified;
c) the chapter in hydro-abrasive erosion resistant coatings has been substantially modified;
d) the annex with test data for hydro-abrasive erosion resistant materials has been removed;
e) a simplified hydro-abrasive erosion evaluation has been added.
The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/351/FDIS</td>
<td>4/366/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The number of hydro power plants with hydro-abrasive erosion is increasing worldwide.

An overall approach is needed to minimize the impact of this phenomenon. Already at the start of the planning phase an evaluation should be done to quantify the hydro-abrasive erosion and the impact on the operation. For this, the influencing parameters and their impact on the hydro-abrasive erosion have to be known. The necessary information for the evaluation comprises among others the future design, the particle parameters of the water, which will pass the turbine, the reservoir sedimentation and the power plant owner’s framework for the future operation like availability or maximum allowable efficiency loss, before an overhaul needs to be done.

Based on this evaluation of the hydro-abrasive erosion, an optimised solution can then be found, by analysing all measures in relation to investments, energy production and maintenance costs as decision parameters. Often a more hydro-abrasive erosion-resistant design, instead of choosing the turbine design with the highest efficiency, will lead to higher revenue. This analysis is best performed by the overall plant designer.

With regards to the machines, owners should find the means to communicate to potential suppliers for their sites, their desire to have the particular attention of the designers at the turbine design phase, directed to the minimization of the severity and effects of hydro-abrasive erosion.

Limited consensus and very little quantitative data exists on the steps which the designer could and should take to extend the useful life before major overhaul of the turbine components when they are operated under severe hydro-abrasive erosion service. This has led some owners to write into their specifications, conditions which cannot be met with known methods and materials.
1 Scope

This document gives guidelines for:

a) presenting data on hydro-abrasive erosion rates on several combinations of water quality, operating conditions, component materials, and component properties collected from a variety of hydro sites;

b) developing guidelines for the methods of minimizing hydro-abrasive erosion by modifications to hydraulic design for clean water. These guidelines do not include details such as hydraulic profile shapes which are determined by the hydraulic design experts for a given site;

c) developing guidelines based on “experience data” concerning the relative resistance of materials faced with hydro-abrasive erosion problems;

d) developing guidelines concerning the maintainability of materials with high resistance to hydro-abrasive erosion and hardcoatings;

e) developing guidelines on a recommended approach, which owners could and should take to ensure that specifications communicate the need for particular attention to this aspect of hydraulic design at their sites without establishing criteria which cannot be satisfied because the means are beyond the control of the manufacturers;

f) developing guidelines concerning operation mode of the hydro turbines in water with particle materials to increase the operation life.

It is assumed in this document that the water is not chemically aggressive. Since chemical aggressiveness is dependent upon so many possible chemical compositions, and the materials of the machine, it is beyond the scope of this document to address these issues.

It is assumed in this document that cavitation is not present in the turbine. Cavitation and hydro-abrasive erosion can reinforce each other so that the resulting erosion is larger than the sum of cavitation erosion plus hydro-abrasive erosion. The quantitative relationship of the resulting hydro-abrasive erosion is not known and it is beyond the scope of this document to assess it, except to suggest that special efforts be made in the turbine design phase to minimize cavitation.

Large solids (e.g. stones, wood, ice, metal objects, etc.) traveling with the water can impact turbine components and produce damage. This damage can in turn increase the flow turbulence thereby accelerating wear by both cavitation and hydro-abrasive erosion. Hydro-abrasive erosion resistant coatings can also be damaged locally by impact of large solids. It is beyond the scope of this document to address these issues.

This document focuses mainly on hydroelectric powerplant equipment. Certain portions can also be applicable to other hydraulic machines.
SOMMAIRE

AVANT-PROPOS ... 78

INTRODUCTION .. 80

1 Domaine d'application ... 81

2 Termes, définitions et symboles .. 82

3 Prédiction du taux d'érosion hydro-abrasive ... 85

 3.1 Modélisation de la profondeur d'érosion hydro-abrasive ... 85

 3.2 Modèle par analogie .. 86

 3.3 Evaluation simplifiée de l'érosion hydro-abrasive ... 87

4 Conception ... 88

 4.1 Généralités ... 88

 4.2 Sélection des matériaux et revêtements présentant une forte résistance à l'érosion hydro-abrasive .. 89

 4.3 Revêtements en acier inoxydable .. 89

 4.4 Système d'adduction hydraulique .. 89

 4.5 Vannes ... 90

 4.5.1 Généralités ... 90

 4.5.2 Protection (par obstruction) de l'espace entre le tourillon et son logement ... 91

 4.5.3 Butées extérieures à la vanne ... 91

 4.5.4 Capacité appropriée de l'organe de manœuvre des vannes de garde 91

 4.5.5 Augmentation de la taille du circuit de dérivation pour prendre en compte un débit de fuite plus élevé au niveau des directrices ... 91

 4.5.6 Conception du système de dérivation .. 91

4.6 Turbine ... 92

 4.6.1 Généralités ... 92

 4.6.2 Conception hydraulique ... 92

 4.6.3 Conception mécanique .. 94

5 Exploitation et maintenance .. 101

 5.1 Exploitation ... 101

 5.2 Pièces de rechange et inspections périodiques ... 102

 5.3 Echantillonnage et contrôle en continu des particules ... 102

6 Matériaux hautement résistants à l'érosion hydro-abrasive .. 104

 6.1 Recommandations concernant la résistance à l'érosion hydro-abrasive relative des matériaux, y compris les revêtements résistants à l'érosion hydro-abrasive .. 104

 6.1.1 Généralités ... 104

 6.1.2 Discussion et conclusions ... 105

 6.2 Lignes directrices concernant la maintenabilité des matériaux utilisés pour les revêtements résistant à l'érosion hydro-abrasive ... 105

 6.2.1 Définition des termes employés dans ce paragraphe ... 105

 6.2.2 Temps entre chaque révision pour les revêtements de protection 105

 6.2.3 Réparation des revêtements de protection .. 106

7 Recommandations concernant les éléments à intégrer dans les spécifications 107

 7.1 Généralités ... 107

 7.2 Propriétés des particules passant dans la turbine .. 109

 7.3 Granulométrie des particules .. 110

Annexe A (informative) Exemple de calcul de la valeur $PL ... 111
Annexe B (informative) Mesures et enregistrements des dommages par érosion hydro-abrasive.. 113
B.1 Enregistrement du dommage par érosion hydro-abrasive .. 113
B.2 Roue Pelton sans revêtement .. 114
B.3 Aiguille et lèvre sans revêtement .. 114
B.4 Roue Pelton avec revêtement dur .. 114
B.5 Pointeau, bec de buse et buse des injecteurs avec revêtement 115
B.6 Roue Francis et labyrinthe fixe sans revêtement .. 115
B.7 Roue Francis avec revêtement et labyrinthe fixe ... 115
B.8 Directrices et plaques d‘usure sans revêtement .. 116
B.9 Directrices et plaques d‘usure avec revêtement .. 116
B.10 Avant-directrices .. 116
B.11 Labyrinthes de roue Francis sans revêtement .. 117
B.12 Pales de Kaplan sans revêtement .. 117
B.13 Pales de Kaplan avec revêtement ... 117
B.14 Fiches techniques d‘échantillonnage ... 117
B.15 Registre d‘inspection, entrée des aubes ... 119
B.16 Registre d‘inspection, sortie des aubes ... 120
B.17 Registre d‘inspection, ceinture de roue ... 121
B.18 Registre d‘inspection, directrices .. 122
B.19 Registre d‘inspection, plaques d‘usure et flasques .. 123
B.20 Registre d‘inspection, labyrinthe supérieur fixe .. 124
B.21 Registre d‘inspection, labyrinthe supérieur mobile ... 125
B.22 Registre d‘inspection, labyrinthe inférieur fixe .. 126
B.23 Registre d‘inspection, labyrinthe inférieur mobile .. 127
B.24 Registre d‘inspection, auget de roue Pelton .. 128
B.25 Registre d‘inspection, arête d‘auget Pelton ... 129
Annexe C (informative) Surveillance de la concentration et des propriétés et procédure d‘échantillonnage de l‘eau .. 130
C.1 Généralités ... 130
C.2 Echantillonnage avant la construction de la centrale .. 130
C.3 Echantillonnage au niveau des centrales existantes ... 131
C.4 Enregistrerment des échantillons .. 131
Annexe D (informative) Procédures d‘analyse de la concentration, de la taille, de la dureté et de la forme des particules .. 132
D.1 Généralités ... 132
D.2 Concentration en particules ... 132
D.3 Distribution granulométrique des particules ... 132
D.4 Composition minéralogique des particules ... 132
D.5 Géométrie des particules ... 133
Annexe E (informative) Fréquence d‘échantillonnage des sédiments 135
Annexe F (informative) Critères typiques de détermination de la nécessité d’une révision en raison de l‘érosion hydro-abrasive .. 136
F.1 Généralités ... 136
F.2 Paramètres qui sont observables quand le groupe est en fonctionnement 136
F.3 Critères qui nécessitent une inspection interne du groupe 137
Annexe G (informative) Exemple de calcul de la profondeur d‘érosion hydro-abrasive .. 138
Annexe H (informative) Exemples de calcul du TBO dans le modèle de référence 140
Annexe I (informative) Compléments sur le modèle de la profondeur d’érosion hydro-abrasive .. 143
 I.1 Compléments sur le modèle et incertitudes .. 143
 I.2 Introduction de la variable PL ... 144
 I.3 Calibration de la formule ... 147
Annexe J (informative) Contrôle qualité du revêtement par projection thermique WC-CoCr .. 148
 J.1 Spécification .. 148
 J.2 Contrôle qualité ... 148
Bibliographie .. 149

Figure 1 – Estimation des vitesses caractéristiques dans les directrices, W_g, et dans la roue, W_{run}, en fonction de la vitesse spécifique de la turbine .. 86
Figure 2 – Evaluation simplifiée de l’érosion hydro-abrasive pour une première évaluation ... 88
Figure 3 – Exemple de protection de la zone de transition ... 91
Figure 4 – Aubes en porte à faux pour un projet de réhabilitation ... 93
Figure 5 – Exemple de cavitation sur la ceinture de roue due à des aubes trop épaisses .. 94
Figure 6 – Exemple de conception de joints au niveau des tourillons des directrices .. 95
Figure 7 – Exemple de fixation de plaques d’usure côté sec (élément de fixation à gauche) .. 97
Figure 8 – Tuyaux d’équilibrage avec coudes au niveau du flasque supérieur .. 98
Figure 9 – Labyrinthe à étages de forme optimisée pour application d’un revêtement dur .. 101
Figure 10 – Exemple de graphique de la concentration des particules en fonction du temps .. 103
Figure D.1 – Trois exemples typiques de géométrie des particules .. 134
Figure I.1 – Exemple d’écoulement dans un injecteur Pelton à différentes ouvertures .. 145

Tableau 1 – Valeurs de K_f et p pour différents composantes .. 86
Tableau 2 – Présentation succincte de la faisabilité de la réparation de type C ... 107
Tableau 3 – Formulaire pour les propriétés des particules passant dans la turbine .. 109
Tableau 4 – Formulaire pour la granulométrie des particules ... 110
Tableau A.1 – Exemple de documentation des essais sur échantillonnage .. 111
Tableau A.2 – Exemple de documentation des résultats d’échantillonnage .. 112
Tableau B.1 – Registre d'inspection, formulaire dédié à l'entrée des aubes .. 119
Tableau B.2 – Registre d'inspection, formulaire dédié à la sortie des aubes .. 120
Tableau B.3 – Registre d'inspection, formulaire dédié à la ceinture de roue .. 121
Tableau B.4 – Registre d'inspection, formulaire dédié aux directrices .. 122
Tableau B.5 – Registre d'inspection, formulaire dédié aux plaques d’usure et aux flasques .. 123
Tableau B.6 – Registre d'inspection, formulaire dédié au labyrinthe supérieur fixe .. 124
Tableau B.7 – Registre d'inspection, formulaire dédié au labyrinthe supérieur mobile .. 125
Tableau B.8 – Registre d'inspection, formulaire dédié au labyrinthe inférieur fixe .. 126
Tableau B.9 – Registre d'inspection, formulaire dédié au labyrinthe inférieur mobile .. 127
Tableau B.10 – Registre d'inspection, formulaire dédié aux augets de roue Pelton128
Tableau B.11 – Registre d'inspection, formulaire dédié aux arêtes d’augets Pelton.............129
Tableau G.1 – Calculs .. 139
Tableau H.1 – Exemple de calcul pour une turbine Pelton...140
Tableau H.2 – Exemple de calcul pour une turbine Francis ... 141
Tableau I.1 – Analyse des constantes de calibration K_f et p .. 147
Tableau J.1 – Eléments qu’il est recommandé d’inclure dans le rapport d’inspection du
revêtement.. 148
MACHINES HYDRAULIQUES –
LIGNES DIRECTRICES RELATIVES
AU TRAITEMENT DE L’EROSION HYDRO-ABRASIVE
DES TURBINES KAPLAN, FRANCIS ET PELTON

AVANT-PROPOS

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés sont représentés dans chaque comité d’études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC s’assure de l’exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l’IEC. L’IEC n’est responsable d’aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l’utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L’utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 62364 a été établie par le comité d’études 4 de l’IEC: Turbines hydrauliques.

Cette deuxième édition annule et remplace la première édition publiée en 2013. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l’édition précédente:

a) la formule pour le TBO du modèle de référence des turbines Pelton a été modifiée;
b) la formule pour le calcul de l’intervalle d’échantillonnage a été modifiée;
c) le chapitre sur les revêtements résistant à l’érosion hydro-abrasive a été substantiellement modifié;
d) l’annexe sur les données test pour les matériaux résistant à l’érosion hydro-abrasive a été supprimée;
e) une évaluation simplifiée de l’érosion hydro-abrasive a été ajoutée.

Le texte de cette Norme Internationale est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/351/FDIS</td>
<td>4/366/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l’approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l’IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. À cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

IMPORTANT – Le logo “colour inside” qui se trouve sur la page de couverture de cette publication indique qu’elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.
INTRODUCTION

Le nombre de centrales hydroélectriques concernées par l’érosion hydro-abrasive est en augmentation dans le monde entier.

Une approche globale est nécessaire afin de minimiser l’impact lié à ce phénomène. Dès la phase d’avant-projet, il convient qu’une évaluation soit menée afin de quantifier l’érosion hydro-abrasive et son impact sur l’exploitation de la centrale. Pour ceci, les paramètres influents et leurs impacts sur l’érosion hydro-abrasive doivent être connus. Les informations nécessaires pour l’évaluation comprennent entre autres la conception future, les paramètres liés aux particules présentes dans l’eau et qui passeront dans la turbine, la sédimentation du réservoir et le cadre d’application du propriétaire de la centrale concernant l’exploitation future comme la disponibilité ou la perte de rendement maximale admissible avant la réalisation d’une révision.

Basée sur cette évaluation de l’érosion hydro-abrasive, une solution optimisée peut être trouvée, en considérant toutes les mesures liées à l’investissement, à la production d’énergie et aux coûts de maintenance comme paramètres de décision. Bien souvent, une conception adaptée pour résister à l’érosion hydro-abrasive sera plus rentable qu’une conception visant à atteindre un rendement maximal de la turbine. Cette analyse est plus efficace lorsqu’elle est réalisée par le concepteur de la centrale.

Il revient aux propriétaires de machines de communiquer auprès des fournisseurs potentiels des machines destinées à leurs sites, sur le fait que les concepteurs doivent porter une attention toute particulière, lors de la phase de conception de la turbine, à la minimisation de la gravité et des effets de l’érosion hydro-abrasive.

Les étapes que le concepteur pourrait suivre, et dont il convient qu’il les suive effectivement, de manière à prolonger la durée de vie utile avant toute révision importante des composantes d’une turbine fonctionnant dans des conditions sévères d’érosion hydro-abrasive, font l’objet d’un consensus restreint et très peu de données quantitatives existent. Cette situation a conduit certains propriétaires à intégrer dans leurs spécifications des conditions qui ne peuvent être satisfaites en s’appuyant sur des méthodes et des matériaux connus.
MACHINES HYDRAULIQUES –
LINNES DIRECTRICES RELATIVES
AU TRAITEMENT DE L’EROSION HYDRO-ABRASIVE
DES TURBINES KAPLAN, FRANCIS ET PELTON

1 Domaine d’application

Ce document donne des lignes directrices pour:

a) présenter les données disponibles concernant les taux d’érosion hydro-abrasive avec diverses combinaisons de qualité de l’eau, conditions d’exploitation, matériaux et propriétés des composants; ces données ayant été obtenues sur différents sites hydroélectriques;

b) développer des lignes directrices permettant de réduire au minimum l’érosion hydro-abrasive en apportant des modifications à la conception hydraulique normalement utilisée en l’absence de particules. Ces lignes directrices n’abordent pas les détails tels que les profils hydrauliques que les spécialistes en conception hydraulique déterminent pour un site donné;

c) développer des lignes directrices établies sur le «retour d’expérience» concernant la résistance relative de matériaux confrontés aux problèmes d’érosion hydro-abrasive;

d) développer des lignes directrices concernant la maintenabilité des matériaux résistant à l’érosion hydro-abrasive et des revêtements de surface durs;

e) développer des lignes directrices relatives à la recommandation d’une méthode, que les propriétaires pourraient appliquer, et dont il convient qu’ils l’appliquent effectivement, afin de s’assurer que les spécifications montrent la nécessité d’accorder une attention toute particulière à la conception des formes hydrauliques propres à leur site sans imposer des critères qui ne peuvent être satisfaits dans la mesure où les moyens à mettre en œuvre ne sont pas maitrisables par les constructeurs;

f) développer des lignes directrices concernant le mode de fonctionnement des turbines hydroélectriques en présence de particules afin d’accroître la durée de vie.

Ce document fait l’hypothèse d’une eau chimiquement non agressive; étant donné que cette agressivité dépend des diverses compositions chimiques possibles, ainsi que des matériaux constitutifs de la machine, le domaine d’application de ce document ne traite pas de cette question.

Ce document fait également l’hypothèse de l’absence de cavitation au niveau de la turbine. En effet la cavitation et l’érosion hydro-abrasive peuvent se renforcer mutuellement de sorte que l’érosion résultante est plus importante que la somme des deux. Comme aucune formulation quantitative de cette érosion résultante n’est connue, ce document n’a pas pour objet de l’évaluer, sauf pour suggérer, lors de la phase de conception de la turbine, des efforts particuliers visant à minimiser la cavitation.

Ce document se concentre principalement sur les équipements des centrales hydroélectriques. Certaines parties de ce document peuvent également s’appliquer à d’autres machines hydrauliques.