Universal serial bus interfaces for data and power –
Part 1-2: Common components – USB Power Delivery specification
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62680-1-2 has been prepared by technical area 14: Interfaces and methods of measurement for personal computing equipment, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

This second edition cancels and replaces the first edition published in 2016 and constitutes a technical revision.

The text of this standard was prepared by the USB Implementers Forum (USB-IF). The structure and editorial rules used in this publication reflect the practice of the organization which submitted it.
The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>CDV</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/2820/CDV</td>
<td>100/2906/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

The IEC 62680 series is based on a series of specifications that were originally developed by the USB Implementers Forum (USB-IF). These specifications were submitted to the IEC under the auspices of a special agreement between the IEC and the USB-IF.

This standard is the USB-IF publication USB Power Delivery Specification Revision 3.0 V.1.0a and ECNs as of 2 August 2016.

The USB Implementers Forum, Inc. (USB-IF) is a non-profit corporation founded by the group of companies that developed the Universal Serial Bus specification. The USB-IF was formed to provide a support organization and forum for the advancement and adoption of Universal Serial Bus technology. The Forum facilitates the development of high-quality compatible USB peripherals (devices), and promotes the benefits of USB and the quality of products that have passed compliance testing.

ANY USB SPECIFICATIONS ARE PROVIDED TO YOU “AS IS,” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE USB IMPLEMENTERS FORUM AND THE AUTHORS OF ANY USB SPECIFICATIONS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OR INFORMATION IN THIS SPECIFICATION.

THE PROVISION OF ANY USB SPECIFICATIONS TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Entering into USB Adopters Agreements may, however, allow a signing company to participate in a reciprocal, RAND-Z licensing arrangement for compliant products. For more information, please see:

http://www.usb.org/developers/docs/
http://www.usb.org/developers/devclass_docs#approved

IEC DOES NOT TAKE ANY POSITION AS TO WHETHER IT IS ADVISABLE FOR YOU TO ENTER INTO ANY USB ADOPTERS AGREEMENTS OR TO PARTICIPATE IN THE USB IMPLEMENTERS FORUM.”
Universal Serial Bus
Power Delivery Specification

Revision 3.0, V1.0a. 25 March 2016 + ECNs 2 August 2016
Yi-Feng Lin Canyon Semiconductor
Anup Nayak Cypress Semiconductor
Jagadeesan Raj Cypress Semiconductor
Pradeep Bajpai Cypress Semiconductor
Rushil Kadakia Cypress Semiconductor
Steven Wong Cypress Semiconductor
Subu Sankaran Cypress Semiconductor
Sumeet Gupta Cypress Semiconductor
Adolfo Montero Dell Inc.
Bruce Montag Dell Inc.
Gary Verdun Dell Inc.
Merle Wood Dell Inc.
Mohammed Hijazi Dell Inc.
Siddhartha Reddy Dell Inc.
Dan Ellis DisplayLink
Jason Young DisplayLink
Peter Burgers DisplayLink
Richard Petrie DisplayLink
Abel Astley Ellisys
Chuck Trefts Ellisys
Emmanuel Durin Ellisys
Mario Pasquali Ellisys
Chien-Cheng Kuo Etron Technology, Inc.
Jack Yang Etron Technology, Inc.
Richard Crisp Etron Technology, Inc.
Shyanjia Chen Etron Technology, Inc.
TsungTa Lu Etron Technology, Inc.
Christian Klein Fairchild Semiconductor
Oscar Freitas Fairchild Semiconductor
Souhib Harb Fairchild Semiconductor
AJ Yang Foxconn / Hon Hai
Fred Fons Foxconn / Hon Hai
Steve Sedio Foxconn / Hon Hai
Terry Little Foxconn / Hon Hai
Bob McVay Fresco Logic Inc.
Christopher Meyers Fresco Logic Inc.
Tom Burton Fresco Logic Inc.
Dian Kurniawan Fresco Logic Inc.
Adam Rodriguez Google Inc.
Alec Berg Google Inc.
David Schneider Google Inc.
Jim Guerin Google Inc.
Juan Fantin Google Inc.
Ken Wu Google Inc.
Babu Mailachalam | Lattice Semiconductor Corp
Gianluca Mariani | Lattice Semiconductor Corp
Joel Coplen | Lattice Semiconductor Corp
Thomas Watza | Lattice Semiconductor Corp
Vesa Lauri | Lattice Semiconductor Corp
Daniel H Jacobs | LeCroy Corporation
Jake Jacobs | LeCroy Corporation
Kimberley McKay | LeCroy Corporation
Mike Micheletti | LeCroy Corporation
Roy Chestnut | LeCroy Corporation
Phil Jakes | Lenovo
Dave Thompson | LSI Corporation
Alan Kinningham | Luxshare-ICT
Daniel Chen | Luxshare-ICT
Josue Castillo | Luxshare-ICT
Chris Yokum | MCCI Corporation
Geert Knapen | MCCI Corporation
Terry Moore | MCCI Corporation
Velmurugan Selvaraj | MCCI Corporation
Brian Marley | Microchip Technology Inc.
Dave Perchlik | Microchip Technology Inc.
Don Perkins | Microchip Technology Inc.
John Sisto | Microchip Technology Inc.
Josh Averyt | Microchip Technology Inc.
Kiet Tran | Microchip Technology Inc.
Mark Bohm | Microchip Technology Inc.
Matthew Kalibat | Microchip Technology Inc.
Mick Davis | Microchip Technology Inc.
Rich Wahler | Microchip Technology Inc.
Ronald Kunin | Microchip Technology Inc.
Shannon Cash | Microchip Technology Inc.
Anthony Chen | Microsoft Corporation
Dave Perchlik | Microsoft Corporation
David Voth | Microsoft Corporation
Geoff Shew | Microsoft Corporation
Jayson Kastens | Microsoft Corporation
Kai Inha | Microsoft Corporation
Marwan Kadado | Microsoft Corporation
Rahul Ramadas | Microsoft Corporation
Randy Aull | Microsoft Corporation
Shiu Ng | Microsoft Corporation
Timo Toivola | Microsoft Corporation
Toby Nixon | Microsoft Corporation
Vivek Gupta | Microsoft Corporation
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Version</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>Initial release Revision 1.0</td>
<td>5 July, 2012</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>Including errata through 31-October-2012</td>
<td>31 October 2012</td>
</tr>
<tr>
<td>1.0</td>
<td>1.2</td>
<td>Including errata through 26-June-2013</td>
<td>26 June, 2013</td>
</tr>
<tr>
<td>1.0</td>
<td>1.3</td>
<td>Including errata through 11-March-2014</td>
<td>11 March 2014</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>Initial release Revision 2.0</td>
<td>11 August 2014</td>
</tr>
<tr>
<td>2.0</td>
<td>1.1</td>
<td>Including errata through 7-May 2015</td>
<td>7 May 2015</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>Initial release Revision 3.0</td>
<td>11 December 2015</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0a</td>
<td>Including errata through 25-March-2016</td>
<td>25 March 2016</td>
</tr>
</tbody>
</table>
| 3.0 | 1.0a + ECNs | This markup contains the following ECNs applied to the Revision 3.0 V1.0a specification text:
 • Applicability of Messages
 • DRP and DRD bits in Capabilities Messages
 • Wait Timing
 • iCapChange Removal
 • vSafe5V Voltage Range Clarification
 • Wait Timing
 • NoResponseTimer
 • Specification Revision Interoperability | 2 August 2016 |
<table>
<thead>
<tr>
<th>Revision</th>
<th>Version</th>
<th>Comments</th>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• tProtErrHardReset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VDM Language</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bcdDevice</td>
<td></td>
</tr>
</tbody>
</table>
INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

Please send comments via electronic mail to techsup@usb.org
For industry information, refer to the USB Implementers Forum web page at http://www.usb.org

All product names are trademarks, registered trademarks, or service marks of their respective owners.
Copyright © 2010-2016 Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, Renesas, STMicroelectronics, and Texas Instruments
All rights reserved.
Table of Contents

Contributors .. 6
Revision History .. 12
Table of Contents ... 15
List of Tables .. 22
List of Figures ... 27
1. Introduction .. 34
 1.1 Overview .. 34
 1.2 Purpose ... 35
 1.3 Scope ... 35
 1.4 Conventions ... 35
 1.4.1 Precedence .. 35
 1.4.2 Keywords ... 35
 1.4.3 Numbering ... 36
 1.5 Related Documents ... 37
 1.6 Terms and Abbreviations ... 37
 1.7 Parameter Values ... 44
 1.8 Changes From Revision 2.0 ... 45
 1.9 Compatibility with Revision 2.0 .. 45
2. Overview .. 45
 2.1 Introduction ... 45
 2.2 Section Overview .. 47
 2.3 Revision 2.0 Changes and Compatibility ... 48
 2.3.1 Changes From Revision 2.0 ... 48
 2.3.2 Compatibility with Revision 2.0 .. 48
 2.4 USB Power Delivery Capable Devices .. 49
 2.5 SOP* Communication .. 50
 2.5.1 Introduction ... 50
 2.5.2 SOP* Collision Avoidance .. 50
 2.5.3 SOP Communication ... 50
 2.5.4 SOP'/SOP¨ Communication with Cable Plugs ... 50
 2.6 Operational Overview ... 52
 2.6.1 Source Operation .. 52
 2.6.2 Sink Operation ... 55
 2.6.3 Cable Plugs .. 57
 2.7 Architectural Overview ... 58
 2.7.1 Policy ... 60
 2.7.2 Message Formation and Transmission .. 61
 2.7.3 Collision Avoidance ... 61
 2.7.4 Power supply ... 62
 2.7.5 DFP/UFP ... 62
 2.7.6 VCONN Source .. 62
5.2 Physical Layer Functions ... 64
5.3 Symbol Encoding .. 65
5.4 Ordered Sets .. 66
5.5 Transmitted Bit Ordering ... 67
5.6 Packet Format .. 68
 5.6.1 Packet Framing ... 68
 5.6.2 CRC .. 70
 5.6.3 Packet Detection Errors ... 72
 5.6.4 Hard Reset .. 72
 5.6.5 Cable Reset .. 73
5.7 Collision Avoidance ... 73
5.8 Biphase Mark Coding (BMC) Signaling Scheme 74
 5.8.1 Encoding and signaling ... 74
 5.8.2 Transmit and Receive Masks .. 77
 5.8.3 Transmitter Load Model .. 83
 5.8.4 BMC Common specifications ... 84
 5.8.5 BMC Transmitter Specifications ... 85
 5.8.6 BMC Receiver Specifications .. 87
5.9 Built-in Self-Test (BIST) ... 91
 5.9.1 BIST Carrier Mode ... 91
 5.9.2 BIST Test Data ... 91
6. Protocol Layer .. 91
 6.1 Overview ... 91
6.2 Messages ... 91
 6.2.1 Message Construction ... 92
6.3 Control Message ... 102
 6.3.1 GoodCRC Message ... 103
 6.3.2 GotoMin Message ... 103
 6.3.3 Accept Message ... 103
 6.3.4 Reject Message ... 104
 6.3.5 Ping Message ... 104
 6.3.6 PS_RDY Message .. 104
 6.3.7 Get_Source_Cap Message .. 104
 6.3.8 Get_Sink_Cap Message .. 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.9</td>
<td>DR_Swap Message</td>
</tr>
<tr>
<td>6.3.10</td>
<td>PR_Swap Message</td>
</tr>
<tr>
<td>6.3.11</td>
<td>VCONN_Swap Message</td>
</tr>
<tr>
<td>6.3.12</td>
<td>Wait Message</td>
</tr>
<tr>
<td>6.3.13</td>
<td>Soft Reset Message</td>
</tr>
<tr>
<td>6.3.14</td>
<td>Not_Supported Message</td>
</tr>
<tr>
<td>6.3.15</td>
<td>Get_Source_Cap_Extended Message</td>
</tr>
<tr>
<td>6.3.16</td>
<td>Get_Status Message</td>
</tr>
<tr>
<td>6.3.17</td>
<td>FR_Swap Message</td>
</tr>
<tr>
<td>6.4</td>
<td>Data Message</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Capabilities Message</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Request Message</td>
</tr>
<tr>
<td>6.4.3</td>
<td>BIST Message</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Vendor Defined Message</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Battery_Status Message</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Alert Message</td>
</tr>
<tr>
<td>6.5</td>
<td>Extended Message</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Source_Capabilities_Extended Message</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Status Message</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Get_Battery_Cap Message</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Get_Battery_Status Message</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Battery_Capabilities Message</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Get.Manufacturer_Info Message</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Manufacturer_Info Message</td>
</tr>
<tr>
<td>6.5.8</td>
<td>Security Messages</td>
</tr>
<tr>
<td>6.5.9</td>
<td>Firmware Update Messages</td>
</tr>
<tr>
<td>6.6</td>
<td>Timers</td>
</tr>
<tr>
<td>6.6.1</td>
<td>CRCReceiveTimer</td>
</tr>
<tr>
<td>6.6.2</td>
<td>SenderResponseTimer</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Capability Timers</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Wait Timers and Times</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Power Supply Timers</td>
</tr>
<tr>
<td>6.6.6</td>
<td>NoResponseTimer</td>
</tr>
<tr>
<td>6.6.7</td>
<td>BIST Timers</td>
</tr>
<tr>
<td>6.6.8</td>
<td>Power_Role_Swap_Timers</td>
</tr>
<tr>
<td>6.6.9</td>
<td>Soft Reset Timers</td>
</tr>
<tr>
<td>6.6.10</td>
<td>Hard Reset Timers</td>
</tr>
<tr>
<td>6.6.11</td>
<td>Structured VDM Timers</td>
</tr>
<tr>
<td>6.6.12</td>
<td>VCONN Timers</td>
</tr>
<tr>
<td>6.6.13</td>
<td>tCableMessage</td>
</tr>
<tr>
<td>6.6.14</td>
<td>DiscoverIdentityTimer</td>
</tr>
<tr>
<td>6.6.15</td>
<td>Collision Avoidance Timers</td>
</tr>
<tr>
<td>6.6.16</td>
<td>tFRSwapInit</td>
</tr>
<tr>
<td>6.6.17</td>
<td>Time Values and Timers</td>
</tr>
</tbody>
</table>

This is a preview - click here to buy the full publication
6.7 Counters .. 165
 6.7.1 MessageID Counter ... 165
 6.7.2 Retry Counter .. 165
 6.7.3 Hard Reset Counter .. 166
 6.7.4 Capabilities Counter ... 166
 6.7.5 Discover Identity Counter .. 166
 6.7.6 VDMBusyCounter ... 166
 6.7.7 Counter Values and Counters .. 166
6.8 Reset ... 167
 6.8.1 Soft Reset and Protocol Error .. 167
 6.8.2 Hard Reset ... 168
 6.8.3 Cable Reset ... 168
6.9 Collision Avoidance .. 168
6.10 Message Discarding ... 169
6.11 State behavior ... 170
 6.11.1 Introduction to state diagrams used in Chapter 6 .. 170
 6.11.2 State Operation ... 170
 6.11.3 List of Protocol Layer States ... 182
6.12 Message Applicability ... 183
 6.12.1 Applicability of Control Messages ... 184
 6.12.2 Applicability of Data Messages .. 185
 6.12.3 Applicability of Extended Messages .. 185
 6.12.4 Applicability of Structured VDM Commands ... 186
 6.12.5 Applicability of Reset Signaling ... 187
 6.12.6 Applicability of Fast Role Swap signal .. 187
6.13 Value Parameters ... 188
7. Power Supply ... 188
 7.1 Source Requirements .. 188
 7.1.1 Behavioral Aspects ... 188
 7.1.2 Source Bulk Capacitance .. 188
 7.1.3 Types of Sources .. 189
 7.1.4 Positive Voltage Transitions .. 189
 7.1.5 Negative Voltage Transitions ... 190
 7.1.6 Response to Hard Resets ... 191
 7.1.7 Changing the Output Power Capability ... 192
 7.1.8 Robust Source Operation .. 192
 7.1.9 Output Voltage Tolerance and Range ... 193
 7.1.10 Charging and Discharging the Bulk Capacitance on VBUS 194
 7.1.11 Swap Standby for Sources .. 194
 7.1.12 Source Peak Current Operation .. 194
 7.1.13 Source Capabilities Extended Parameters .. 196
 7.1.14 Fast Role Swap ... 197
 7.2 Sink Requirements ... 199
 7.2.1 Behavioral Aspects .. 199
 7.2.2 Sink Bulk Capacitance ... 199
7.2.3 Sink Standby ... 199
7.2.4 Suspend Power Consumption 199
7.2.5 Zero Negotiated Current ... 200
7.2.6 Transient Load Behavior ... 200
7.2.7 Swap Standby for Sinks ... 200
7.2.8 Sink Peak Current Operation 200
7.2.9 Robust Sink Operation ... 200
7.2.10 Fast Role Swap ... 201
7.3 Transitions ... 203
7.3.1 Increasing the Current ... 204
7.3.2 Increasing the Voltage ... 206
7.3.3 Increasing the Voltage and Current 208
7.3.4 Increasing the Voltage and Decreasing the Current . 210
7.3.5 Decreasing the Voltage and Increasing the Current . 212
7.3.6 Decreasing the Current .. 214
7.3.7 Decreasing the Voltage .. 216
7.3.8 Decreasing the Voltage and the Current 218
7.3.9 Sink Requested Power Role Swap 220
7.3.10 Source Requested Power Role Swap 223
7.3.11 GotoMin Current Decrease 226
7.3.12 Source Initiated Hard Reset 228
7.3.13 Sink Initiated Hard Reset 230
7.3.14 No change in Current or Voltage 232
7.3.15 Fast Role Swap ... 234
7.4 Electrical Parameters .. 236
7.4.1 Source Electrical Parameters 236
7.4.2 Sink Electrical Parameters 238
7.4.3 Common Electrical Parameters 239
8. Device Policy ... 239
8.1 Overview ... 239
8.2 Device Policy Manager .. 239
8.2.1 Capabilities .. 241
8.2.2 System Policy .. 241
8.2.3 Control of Source/Sink ... 241
8.2.4 Cable Detection .. 241
8.2.5 Managing Power Requirements 242
8.2.6 Use of “Externally Powered” bit with Batteries and AC supplies .. 243
8.2.7 Interface to the Policy Engine 245
8.3 Policy Engine ... 245
8.3.1 Introduction .. 245
8.3.2 Atomic Message Sequence Diagrams 246
8.3.3 State Diagrams .. 368
9. States and Status Reporting ... 441
9.1 Overview .. 441
9.1.1 PDUSB Device and Hub Requirements ... 443
9.1.2 Mapping to USB Device States ... 443
9.1.3 PD Software Stack ... 446
9.1.4 PDUSB Device Enumeration .. 446

9.2 PD Class Specific Descriptors .. 448
9.2.1 USB Power Delivery Capability Descriptor .. 448
9.2.2 Battery Info Capability Descriptor .. 449
9.2.3 PD Consumer Port Capability Descriptor ... 450
9.2.4 PD Provider Port Capability Descriptor .. 451

9.3 PD Class Specific Requests and Events ... 453
9.3.1 Class-specific Requests ... 453

9.4 PDUSB Hub and PDUSB Peripheral Device Requests ... 454
9.4.1 GetBatteryStatus .. 454
9.4.2 SetPDFeature ... 455

10. Power Rules .. 457
10.1 Introduction .. 457
10.2 Source Power Rules ... 457
10.2.1 Source Power Rule Considerations .. 457
10.2.2 Normative Voltages and Currents ... 458
10.2.3 Optional Voltages/Currents ... 460
10.2.4 Power sharing between ports ... 461
10.3 Sink Power Rules ... 461
10.3.1 Sink Power Rule Considerations ... 461
10.3.2 Normative Sink Rules .. 461

A. CRC calculation ... 461
A.1 C code example .. 461
A.2 Table showing the full calculation over one Message ... 463

B. PD Message Sequence Examples ... 464
B.1 External power is supplied downstream ... 464
B.2 External power is supplied upstream .. 468
B.3 Giving back power .. 475

C. VDM Command Examples .. 485
C.1 Discover Identity Example .. 485
C.1.1 Discover Identity Command request .. 485
C.1.2 Discover Identity Command response – Active Cable 486
C.1.3 Discover Identity Command response – Hub ... 487
C.2 Discover SVIDs Example .. 489
C.2.1 Discover SVIDs Command request ... 489
C.2.1 Discover SVIDs Command response ... 489
C.3 Discover Modes Example ... 491
C.3.1 Discover Modes Command request .. 491
C.3.2 Discover Modes Command response ... 491
C.4 Enter Mode Example ... 493
C.4.1 Enter Mode Command request .. 493
C.4.2 Enter Mode Command response ... 493
C.4.1 Enter Mode Command request with additional VDO.............................. 494
C.5 Exit Mode Example.. 495
 C.5.1 Exit Mode Command request... 495
 C.5.2 Exit Mode Command response... 495
C.6 Attention Example... 497
 C.6.1 Attention Command request ... 497
 C.6.2 Attention Command request with additional VDO.............................. 497
List of Tables

Table 1-1 Terms and Abbreviations ... 37
Table 5-1 4b5b Symbol Encoding Table .. 65
Table 5-2 Ordered Sets .. 66
Table 5-3 Validation of Ordered Sets ... 66
Table 5-4 Data Size ... 67
Table 5-5 SOP ordered set .. 68
Table 5-6 SOP’ ordered set .. 69
Table 5-7 SOP” ordered set ... 70
Table 5-8 SOP’ Debug ordered set ... 70
Table 5-9 SOP” Debug ordered set ... 70
Table 5-10 CRC-32 Mapping .. 71
Table 5-11 Hard Reset ordered set ... 72
Table 5-12 Cable Reset ordered set ... 73
Table 5-13 Rp values used for Collision Avoidance .. 74
Table 5-14 BMC Tx Mask Definition, X Values ... 79
Table 5-15 BMC Tx Mask Definition, Y Values ... 79
Table 5-16 BMC Rx Mask Definition ... 83
Table 5-17 BMC Common Normative Requirements 85
Table 5-18 BMC Transmitter Normative Requirements 85
Table 5-19 BMC Receiver Normative Requirements 88
Table 6-1 Message Header .. 93
Table 6-2 Revision Interoperability during an Explicit Contract 95
Table 6-3 Extended Message Header .. 96
Table 6-4 Use of Unchunked Message Supported bit 98
Table 6-5 Control Message Types.. 102
Table 6-6 Data Message Types .. 109
Table 6-7 Power Data Object ... 110
Table 6-8 Fixed Supply PDO - Source .. 112
Table 6-9 Fixed Power Source Peak Current Capability 114
Table 6-10 Variable Supply (non-Battery) PDO - Source 114
Table 6-11 Battery Supply PDO - Source ... 114
Table 6-12 Fixed Supply PDO - Sink ... 115
Table 6-13 Variable Supply (non-Battery) PDO - Sink 116
Table 6-14 Battery Supply PDO - Sink .. 117
Table 6-15 Fixed and Variable Request Data Object 117
Table 6-16 Fixed and Variable Request Data Object with GiveBack Support ... 117
Table 6-17 Battery Request Data Object ... 118
Table 6-18 Battery Request Data Object with GiveBack Support 118
Table 6-19 BIST Data Object ... 121
Table 6-20 Unstructured VDM Header ... 123
Table 6-21 Structured VDM Header ... 124
Table 6-22 Structured VDM Commands .. 124
Table 6-23 SVID Values .. 125
Table 6-24 Commands and Responses ... 127
Table 6-25 ID Header VDO ... 128
Table 6-26 Product Types (UFP) ... 129
Table 6-27 Product Types (Cable Plug) .. 129
Table 6-28 Product Types (DFP) ... 129
Table 6-29 Cert Stat VDO ... 130
Table 6-30 Product VDO ... 130
Table 6-31 Passive Cable VDO .. 131
Table 6-32 Active Cable VDO ... 132
Table 6-33 AMA VDO .. 134
Table 6-34 Discover SVIDs Responder VDO .. 135
Table 6-35 Battery Status Data Object (BSDO) ... 143
Table 6-36 Alert Data Object ... 144
Table 6-37 Extended Message Types .. 145
Table 6-38 Source Capabilities Extended Data Block (SCEDB) 146
Table 6-39 Status Data Block (SSDB) ... 150
Table 6-40 Get Battery Cap Data Block (GBCDB) .. 151
Table 6-41 Get Battery Status Data Block (GBSDB) 152
Table 6-42 Battery Capability Data Block (BCDB) ... 152
Table 6-43 Get Manufacturer Info Data Block (GMIDB) 153
Table 6-44 Manufacturer Info Data Block (MIDB) ... 154
Table 6-45 Time Values .. 163
Table 6-46 Timers ... 164
Table 6-47 Counter parameters .. 166
Table 6-48 Counters ... 167
Table 6-49 Message discarding ... 169
Table 6-50 Protocol Layer States ... 182
Table 6-51 Applicability of Control Messages .. 184
Table 6-52 Applicability of Data Messages ... 185
Table 6-53 Applicability of Extended Messages .. 185
Table 6-54 Applicability of Structured VDM Commands 186
Table 6-55 Applicability of Reset Signaling ... 187
Table 6-56 Applicability of Fast Role Swap signal .. 187
Table 6-57 Value Parameters ... 188
Table 7-1 Sequence Description for Increasing the Current 205
Table 7-2 Sequence Description for Increasing the Voltage .. 207
Table 7-3 Sequence Diagram for Increasing the Voltage and Current 209
Table 7-4 Sequence Description for Increasing the Voltage and Decreasing the Current.... 211
Table 7-5 Sequence Description for Decreasing the Voltage and Increasing the Current. 213
Table 7-6 Sequence Description for Decreasing the Current ... 215
Table 7-7 Sequence Description for Decreasing the Voltage ... 217
Table 7-8 Sequence Description for Decreasing the Voltage and the Current 219
Table 7-9 Sequence Description for a Sink Requested Power Role Swap 221
Table 7-10 Sequence Description for a Source Requested Power Role Swap 224
Table 7-11 Sequence Description for a GotoMin Current Decrease 227
Table 7-12 Sequence Description for a Source Initiated Hard Reset 229
Table 7-13 Sequence Description for a Sink Initiated Hard Reset 231
Table 7-14 Sequence Description for no change in Current or Voltage 233
Table 7-15 Sequence Description for Fast Role Swap ... 234
Table 7-16 Source Electrical Parameters .. 236
Table 7-17 Sink Electrical Parameters .. 238
Table 7-18 Common Source/Sink Electrical Parameters .. 239
Table 8-1 Basic Message Flow ... 246
Table 8-2 Potential issues in Basic Message Flow .. 247
Table 8-3 Basic Message Flow with CRC failure ... 249
Table 8-4 Interruptible and Non-interruptible AMS ... 249
Table 8-5 Steps for a successful Power Negotiation .. 252
Table 8-6 Steps for a GotoMin Negotiation .. 255
Table 8-7 Steps for a Soft Reset .. 257
Table 8-8 Steps for Source initiated Hard Reset ... 260
Table 8-9 Steps for Sink initiated Hard Reset ... 263
Table 8-10 Steps for Source initiated Hard Reset – Sink long reset 266
Table 8-11 Steps for a Successful Source Initiated Power Role Swap Sequence 270
Table 8-12 Steps for a Successful Source Initiated Power Role Swap Sequence 275
Table 8-13 Steps for a Successful Fast Role Swap Sequence 280
Table 8-14 Steps for Data Role Swap, UFP operating as Sink initiates 284
Table 8-15 Steps for Data Role Swap, UFP operating as Source initiates 286
Table 8-16 Steps for Data Role Swap, DFP operating as Source initiates 290
Table 8-17 Steps for Data Role Swap, DFP operating as Sink initiates 292
Table 8-18 Steps for Source to Sink VCONN Source Swap ... 296
Table 8-19 Steps for Sink to Source VCONN Source Swap .. 299
Table 8-20 Steps for Source Alert to Sink ... 301
Table 8-21 Steps for Sink Alert to Source .. 303
Table 8-22 Steps for a Sink getting Source status Sequence 305
Table 8-23 Steps for a Source getting Sink status Sequence 307
Table 8-24 Steps for a Sink getting Source capabilities Sequence .. 309
Table 8-25 Steps for a Dual-Role Source getting Dual-Role Sink’s capabilities as a Source Sequence ... 311
Table 8-26 Steps for a Source getting Sink capabilities Sequence .. 313
Table 8-27 Steps for a Dual-Role Sink getting Dual-Role Source capabilities as a Sink Sequence ... 315
Table 8-28 Steps for a Sink getting Source extended capabilities Sequence 317
Table 8-29 Steps for a Dual-Role Source getting Dual-Role Sink extended capabilities Sequence ... 319
Table 8-30 Steps for a Sink getting Source Battery capabilities Sequence 321
Table 8-31 Steps for a Source getting Sink Battery capabilities Sequence 323
Table 8-32 Steps for a Source getting Sink’s Port Manufacturer information Sequence 325
Table 8-33 Steps for a Source getting Sink’s Port Manufacturer information Sequence 327
Table 8-34 Steps for a Source getting Sink’s Battery Manufacturer information Sequence .. 329
Table 8-35 Steps for a Source getting Sink’s Battery Manufacturer information Sequence .. 331
Table 8-36 Steps for a Source requesting a security exchange with a Sink Sequence 333
Table 8-37 Steps for a Sink requesting a security exchange with a Source Sequence 335
Table 8-38 Steps for a Vconn Source requesting a security exchange with a Cable Plug Sequence ... 337
Table 8-39 Steps for a Source requesting a firmware update exchange with a Sink Sequence ... 339
Table 8-40 Steps for a Source requesting a firmware update exchange with a Sink Sequence ... 341
Table 8-41 Steps for a Vconn Source requesting a firmware update exchange with a Cable Plug Sequence ... 343
Table 8-42 Steps for DFP to UFP Discover Identity ... 345
Table 8-43 Steps for Source Port to Cable Plug Discover Identity 347
Table 8-44 Steps for DFP to Cable Plug Discover Identity ... 349
Table 8-45 Steps for DFP to UFP Enter Mode ... 351
Table 8-46 Steps for DFP to UFP Exit Mode ... 353
Table 8-47 Steps for DFP to Cable Plug Enter Mode ... 355
Table 8-48 Steps for DFP to Cable Plug Exit Mode ... 357
Table 8-49 Steps for UFP to DFP Exit Mode ... 360
Table 8-50 Steps for UFP to DFP Attention .. 361
Table 8-51 Steps for BIST Eye Pattern Test .. 363
Table 8-52 Policy Engine States ... 365
Table 9-1 USB Power Delivery Type Codes .. 398
Table 9-2 USB Power Delivery Capability Descriptor .. 398
Table 9-3 Battery Info Capability Descriptor .. 399
Table 9-4 PD Consumer Port Descriptor ... 400
Table 9-5 PD Provider Port Descriptor .. 401
Table 9-6 PD Class Requests ... 453
Table 9-7 PD Class Request Codes .. 453
Table 9-8 PD Class Feature Selectors ... 453
Table 9-9 Battery Status Structure .. 454
Table 9-10 Battery Wake Mask .. 456
Table 9-11 Charging Policy Encoding .. 456
Table 10-1 Considerations for Sources .. 457
Table 10-2 Normative Voltages and Currents .. 458
Table 10-3 Fixed Supply PDO – Source 5V ... 459
Table 10-4 Fixed Supply PDO – Source 9V .. 460
Table 10-5 Fixed Supply PDO – Source 15V ... 460
Table 10-6 Fixed Supply PDO – Source 20V ... 460
Table B-1 External power is supplied downstream ... 465
Table B-2 External power is supplied upstream .. 468
Table B-3 Giving back power ... 475
Table C-1 Discover Identity Command request from Initiator Example 486
Table C-2 Discover Identity Command response from Active Cable Responder Example 486
Table C-3 Discover Identity Command response from Hub Responder Example 488
Table C-4 Discover SVIDs Command request from Initiator Example 489
Table C-5 Discover SVIDs Command response from Responder Example 489
Table C-6 Discover Modes Command request from Initiator Example 491
Table C-7 Discover Modes Command response from Responder Example 491
Table C-8 Enter Mode Command request from Initiator Example 493
Table C-9 Enter Mode Command response from Responder Example 493
Table C-10 Enter Mode Command request from Initiator Example 494
Table C-11 Exit Mode Command request from Initiator Example 495
Table C-12 Exit Mode Command response from Responder Example 495
Table C-13 Attention Command request from Initiator Example 497
Table C-14 Attention Command request from Initiator with additional VDO Example 497
List of Figures

Figure 2-1 Logical Structure of USB Power Delivery Capable Devices .. 49
Figure 2-2 Example SOP’ Communication between VCONN Source and Cable Plug(s) 51
Figure 2-3 USB Power Delivery Communications Stack .. 58
Figure 2-4 USB Power Delivery Communication Over USB .. 59
Figure 2-5 High Level Architecture View ... 60
Figure 5-1 Interpretation of ordered sets .. 66
Figure 5-2 Transmit Order for Various Sizes of Data ... 67
Figure 5-3 USB Power Delivery Packet Format ... 68
Figure 5-4 CRC 32 generation .. 71
Figure 5-5 Line format of Hard Reset .. 73
Figure 5-6 Line format of Cable Reset .. 73
Figure 5-7 BMC Example ... 74
Figure 5-8 BMC Transmitter Block Diagram .. 75
Figure 5-9 BMC Receiver Block Diagram ... 75
Figure 5-10 BMC Encoded Start of Preamble ... 76
Figure 5-11 Transmitting or Receiving BMC Encoded Frame Terminated by Zero with High-to-Low Last Transition ... 76
Figure 5-12 Transmitting or Receiving BMC Encoded Frame Terminated by One with High-to-Low Last Transition ... 76
Figure 5-13 Transmitting or Receiving BMC Encoded Frame Terminated by Zero with Low to High Last Transition .. 77
Figure 5-14 Transmitting or Receiving BMC Encoded Frame Terminated by One with Low to High Last Transition .. 77
Figure 5-15 BMC Tx ‘ONE’ Mask ... 78
Figure 5-16 BMC Tx ‘ZERO’ Mask ... 78
Figure 5-17 BMC Rx ‘ONE’ Mask when Sourcing Power .. 80
Figure 5-18 BMC Rx ‘ZERO’ Mask when Sourcing Power .. 81
Figure 5-19 BMC Rx ‘ONE’ Mask when Power neutral .. 81
Figure 5-20 BMC Rx ‘ZERO’ Mask when Power neutral .. 82
Figure 5-21 BMC Rx ‘ONE’ Mask when Sinking Power ... 82
Figure 5-22 BMC Rx ‘ZERO’ Mask when Sinking Power ... 83
Figure 5-23 Transmitter Load Model for BMC Tx from a Source .. 84
Figure 5-24 Transmitter Load Model for BMC Tx from a Sink ... 84
Figure 5-25 Transmitter diagram illustrating zDriver ... 86
Figure 5-26 Inter-Frame Gap Timings ... 87
Figure 5-27 Example Multi-Drop Configuration showing two DRPs 89
Figure 5-28 Example Multi-Drop Configuration showing a DFP and UFP 89
Figure 5-29 Test Data Frame .. 91
Figure 6-1 USB Power Delivery Packet Format including Control Message Payload 92
Figure 6-2 USB Power Delivery Packet Format including Data Message Payload ... 92
Figure 6-3 USB Power Delivery Packet Format including an Extended Message Header and Payload ... 92
Figure 6-4 Example Security_Request sequence Unchunked (Chunked bit = 0) .. 98
Figure 6-5 Example byte transmission for Security_Request Message of Data Size 7 (Chunked bit is set to 0) .. 98
Figure 6-6 Example byte transmission for Security_Response Message of Data Size 7 (Chunked bit is set to 0) .. 99
Figure 6-7 Example Security_Request sequence Chunked (Chunked bit = 1) .. 100
Figure 6-8 Example Security_Request Message of Data Size 7 (Chunked bit set to 1) ... 101
Figure 6-9 Example Chunk 0 of Security_Response Message of Data Size 30 (Chunked bit set to 1) 101
Figure 6-10 Example byte transmission for a Security_Request Message Chunk request (Chunked bit is set to 1) .. 101
Figure 6-11 Example Chunk 1 of Security_Response Message of Data Size 30 (Chunked bit set to 1) 102
Figure 6-12 Example Capabilities Message with 2 Power Data Objects .. 110
Figure 6-13 BIST Message .. 121
Figure 6-14 Vendor Defined Message .. 122
Figure 6-15 Discover Identity Command response 127
Figure 6-16 Example Discover SVIDs response with 3 SVIDs ... 135
Figure 6-17 Example Discover SVIDs response with 4 SVIDs ... 135
Figure 6-18 Example Discover SVIDs response with 12 SVIDs followed by an empty response ... 135
Figure 6-19 Example Discover Modes response for a given SVID with 3 Modes .. 136
Figure 6-20 Successful Enter Mode sequence .. 137
Figure 6-21 Enter Mode sequence Interrupted by Source Capabilities and then Re-run 138
Figure 6-22 Unsuccessful Enter Mode sequence due to NAK .. 138
Figure 6-23 Exit Mode sequence .. 139
Figure 6-24 Attention Command request/response sequence .. 140
Figure 6-25 Command request/response sequence ... 140
Figure 6-26 Enter/Exit Mode Process .. 142
Figure 6-27 Battery_Status Message .. 143
Figure 6-28 Alert Message .. 144
Figure 6-29 Source_Capabilities_Extended Message ... 146
Figure 6-30 Status Message .. 150
Figure 6-31 Get_Battery_Cap Message .. 151
Figure 6-32 Get_Battery_Status Message .. 152
Figure 6-33 Battery_Capabilities Message .. 152
Figure 6-34 Get_Manufacturer_Info Message ... 153
Figure 6-35 Manufacturer_Info Message .. 153
Figure 6-36 Security_Request Message .. 154
Figure 8-5 Successful Power Negotiation ... 251
Figure 8-6 Successful GotoMin operation ... 255
Figure 8-7 Soft Reset ... 257
Figure 8-8 Source initiated Hard Reset ... 259
Figure 8-9 Sink Initiated Hard Reset .. 262
Figure 8-10 Source initiated reset - Sink long reset .. 265
Figure 8-11 Successful Power Role Swap Sequence Initiated by the Source 269
Figure 8-12 Successful Power Role Swap Sequence Initiated by the Sink 274
Figure 8-13 Successful Fast Role Swap Sequence .. 279
Figure 8-14 Data Role Swap, UFP operating as Sink initiates 283
Figure 8-15 Data Role Swap, UFP operating as Source initiates 286
Figure 8-16 Data Role Swap, DFP operating as Source initiates 289
Figure 8-17 Data Role Swap, DFP operating as Sink initiates 292
Figure 8-18 Source to Sink VCONN Source Swap ... 295
Figure 8-19 Sink to Source VCONN Source Swap ... 298
Figure 8-20 Source Alert to Sink ... 301
Figure 8-21 Sink Alert to Source ... 303
Figure 8-22 Sink Gets Source Status .. 305
Figure 8-23 Source Gets Sink Status .. 307
Figure 8-24 Sink Gets Source’s Capabilities ... 309
Figure 8-25 Dual-Role Source Gets Dual-Role Sink’s Capabilities as a Source 311
Figure 8-26 Source Gets Sink’s Capabilities ... 313
Figure 8-27 Dual-Role Sink Gets Dual-Role Source’s Capabilities as a Sink 315
Figure 8-28 Sink Gets Source’s Extended Capabilities ... 317
Figure 8-29 Dual-Role Source Gets Dual-Role Sink’s Extended Capabilities 319
Figure 8-30 Sink Gets Source’s Battery Capabilities ... 321
Figure 8-31 Source Gets Sink’s Battery Capabilities ... 323
Figure 8-32 Source Gets Sink’s Port Manufacturer Information 325
Figure 8-33 Sink Gets Source’s Port Manufacturer Information 327
Figure 8-34 Source Gets Sink’s Battery Manufacturer Information 329
Figure 8-35 Sink Gets Source’s Battery Manufacturer Information 331
Figure 8-36 VCONN Source Gets Cable Plug’s Manufacturer Information 333
Figure 8-37 Source requests security exchange with Sink 335
Figure 8-38 Sink requests security exchange with Source 337
Figure 8-39 Vconn Source requests security exchange with Cable Plug 339
Figure 8-40 Source requests firmware update exchange with Sink 341
Figure 8-41 Sink requests firmware update exchange with Source 343
Figure 8-42 Vconn Source requests firmware update exchange with Cable Plug 345
Figure 8-43 DFP to UFP Discover Identity ... 347
Figure 8-44 Source Port to Cable Plug Discover Identity ... 349
Figure 8-84 Firmware update response received state diagram ... 394
Figure 8-85: DFP to UFP Data Role Swap State Diagram .. 395
Figure 8-86: UFP to DFP Data Role Swap State Diagram .. 397
Figure 8-87: Dual-Role Port in Source to Sink Power Role Swap State Diagram 399
Figure 8-88: Dual-role Port in Sink to Source Power Role Swap State Diagram 402
Figure 8-89: Dual-Role Port in Source to Sink Fast Role Swap State Diagram 405
Figure 8-90: Dual-role Port in Source to Sink Fast Role Swap State Diagram 408
Figure 8-91 Dual-Role (Source) Get Source Capabilities diagram 410
Figure 8-92 Dual-Role (Source) Give Sink Capabilities diagram ... 410
Figure 8-93 Dual-Role (Sink) Get Sink Capabilities State Diagram 411
Figure 8-94 Dual-Role (Sink) Give Source Capabilities State Diagram 411
Figure 8-95 Dual-Role (Source) Get Source Capabilities Extended state diagram 412
Figure 8-96 Dual-Role (Source) Give Sink Capabilities diagram ... 412
Figure 8-97 VCONN Swap State Diagram ... 413
Figure 8-98 Initiator to Port VDM Discover Identity State Diagram 415
Figure 8-99 Initiator VDM Discover SVIDs State Diagram .. 416
Figure 8-100 Initiator VDM Discover Modes State Diagram .. 417
Figure 8-101 Initiator VDM Attention State Diagram ... 418
Figure 8-102 Responder Structured VDM Discover Identity State Diagram 419
Figure 8-103 Responder Structured VDM Discover SVIDs State Diagram 420
Figure 8-104 Responder Structured VDM Discover Modes State Diagram 420
Figure 8-105 Receiving a Structured VDM Attention State Diagram 421
Figure 8-106 DFP VDM Mode Entry State Diagram ... 422
Figure 8-107 DFP VDM Mode Exit State Diagram ... 423
Figure 8-108 UFP Structured VDM Enter Mode State Diagram .. 424
Figure 8-109 UFP Structured VDM Exit Mode State Diagram ... 425
Figure 8-110 Cable Ready VDM State Diagram .. 426
Figure 8-111 Cable Plug Soft Reset State Diagram ... 426
Figure 8-112 Cable Plug Hard Reset State Diagram .. 427
Figure 8-113 DFP Soft Reset or Cable Reset of a Cable Plug State Diagram 428
Figure 8-114 UFP Source Soft Reset of a Cable Plug State Diagram 429
Figure 8-115 Source Startup Structured VDM Discover Identity State Diagram 430
Figure 8-116 Cable Plug Structured VDM Enter Mode State Diagram 431
Figure 8-117 Cable Plug Structured VDM Exit Mode State Diagram 432
Figure 8-118 BIST Carrier Mode State Diagram ... 434
Figure 9-1 Example PD Topology ... 442
Figure 9-2 Mapping of PD Topology to USB ... 443
Figure 9-3 USB Attached to USB Powered State Transition .. 444
Figure 9-4 Any USB State to USB Attached State Transition (When operating as a Consumer) .. 445
Figure 9-5 Any USB State to USB Attached State Transition (When operating as a Provider) ... 445
Figure 9-6 Any USB State to USB Attached State Transition (After a USB Type-C Data Role Swap) ... 446
Figure 9-7 Software stack on a PD aware OS ... 446
Figure 9-8 Enumeration of a PDUSB Device ... 447
Figure 10-1 Source Power Rule Illustration ... 458
Figure 10-2 Source Power Rule Example ... 459
Figure B-1 External Power supplied downstream ... 464
Figure B-2 External Power supplied upstream ... 468
Figure B-3 Giving Back Power ... 475
1 Introduction

USB has evolved from a data interface capable of supplying limited power to a primary provider of power with a data interface. Today many devices charge or get their power from USB ports contained in laptops, cars, aircraft or even wall sockets. USB has become a ubiquitous power socket for many small devices such as cell phones, MP3 players and other hand-held devices. Users need USB to fulfill their requirements not only in terms of data but also to provide power to, or charge, their devices simply, often without the need to load a driver, in order to carry out “traditional” USB functions.

There are however, still many devices which either require an additional power connection to the wall, or exceed the USB rated current in order to operate. Increasingly, international regulations require better energy management due to ecological and practical concerns relating to the availability of power. Regulations limit the amount of power available from the wall which has led to a pressing need to optimize power usage. The USB Power Delivery Specification has the potential to minimize waste as it becomes a standard for charging devices that are not satisfied by [USBBC 1.2].

Wider usage of wireless solutions is an attempt to remove data cabling but the need for “tethered” charging remains. In addition, industrial design requirements drive wired connectivity to do much more over the same connector.

USB Power Delivery is designed to enable the maximum functionality of USB by providing more flexible power delivery along with data over a single cable. Its aim is to operate with and build on the existing USB ecosystem; increasing power levels from existing USB standards, for example Battery Charging, enabling new higher power use cases such as USB powered Hard Disk Drives (HDDs) and printers.

With USB Power Delivery the power direction is no longer fixed. This enables the product with the power (Host or Peripheral) to provide the power. For example, a display with a supply from the wall can power, or charge, a laptop. Alternatively, USB power bricks or chargers are able to supply power to laptops and other battery powered devices through their, traditionally power providing, USB ports.

USB Power Delivery enables hubs to become the means to optimize power management across multiple peripherals by allowing each device to take only the power it requires, and to get more power when required for a given application. For example battery powered devices can get increased charging current and then give it back temporarily when the user’s HDD requires spinning up. Optionally the hubs can communicate with the PC to enable even more intelligent and flexible management of power either automatically or with some level of user intervention.

USB Power Delivery allows Low Power cases such as headsets to negotiate for only the power they require. This provides a simple solution that enables USB devices to operate at their optimal power levels.

The Power Delivery Specification, in addition to providing mechanisms to negotiate power also can be used as a side-band channel for standard and vendor defined messaging. Power Delivery enables alternative modes of operation by providing the mechanisms to discover, enter and exit Alternate Modes. The specification also enables discovery of cable capabilities such as supported speeds and current levels.

1.1 Overview

This specification defines how USB Devices may negotiate for more current and/or higher or lower voltages over the USB cable (using the USB Type-C CC wire as the communications channel) than are defined in the [USB 2.0], [USB 3.1], [USB Type-C 1.2] or [USBBC 1.2] specifications. It allows Devices with greater power requirements than can be met with today’s specification to get the power they require to operate from VBUS and negotiate with external power sources (e.g. Wall Warts). In addition, it allows a Source and Sink to swap power roles such that a Device could supply power to the Host. For example, a display could supply power to a notebook to charge its battery.

The USB Power Delivery Specification is guided by the following principles:

a) Works seamlessly with legacy USB Devices

b) Compatible with existing spec-compliant USB cables

c) Minimizes potential damage from non-compliant cables (e.g. ‘Y’ cables etc.)
d) Optimized for low-cost implementations

This specification defines mechanisms to discover, enter and exit Modes defined either by a standard or by a particular vendor. These Modes can be supported either by the Port Partner or by a cable connecting the two Port Partners.

The specification defines mechanisms to discover the capabilities of cables which can communicate using Power Delivery.

This specification adds a mechanism to swap the data roles such that the upstream facing Port becomes the downstream facing Port and vice versa. It also enables a swap of the end supplying V_{CONN} to a powered cable.

1.2 Purpose

The USB Power Delivery specification defines a power delivery system covering all elements of a USB system including: Hosts, Devices, Hubs, Chargers and cable assemblies. This specification describes the architecture, protocols, power supply behavior, connectors and cabling necessary for managing power delivery over USB at up to 100W. This specification is intended to be fully compatible and extend the existing USB infrastructure. It is intended that this specification will allow system OEMs, power supply and peripheral developers to achieve flexibility for product versatility and market differentiation without losing backwards compatibility.

USB Power Delivery is designed to operate independently of the existing USB bus defined mechanisms used to negotiate power which are:

- [USB 2.0], [USB 3.1] mechanisms for supplying power for high power interfaces.
- [USBBC 1.2] mechanisms for supplying higher power (not mandated by this specification).
- [USB Type-C 1.2] mechanisms for supplying higher power

Initial operating conditions remain the USB Default Operation as defined in [USB 2.0], [USB 3.1], [USB Type-C 1.2] or [USBBC 1.2].

- The DFP sources v_{Safe5V} over V_{BUS}.
- The UFP consumes power from V_{BUS}.

1.3 Scope

This specification is intended as an extension to the existing [USB 2.0], [USB 3.1], [USB Type-C 1.2] and [USBBC 1.2] specifications. It addresses only the elements required to implement USB Power Delivery. It is targeted at power supply vendors, manufacturers of [USB 2.0], [USB 3.1], [USB Type-C 1.2] and [USBBC 1.2] Platforms, Devices and cable assemblies.

Normative information is provided to allow interoperability of components designed to this specification. Informative information, when provided, may illustrate possible design implementation.

1.4 Conventions

1.4.1 Precedence

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures, and then text.

1.4.2 Keywords

The following keywords differentiate between the levels of requirements and options.

1.4.2.1 Conditional Normative

Conditional Normative is a keyword used to indicate a feature that is mandatory when another related feature has been implemented. Designers are mandated to implement all such requirements, when the dependent features have been implemented, to ensure interoperability with other compliant Devices.
1.4.2.2 Deprecated

Deprecated is a keyword used to indicate a feature, supported in previous releases of the specification, which is no longer supported.

1.4.2.3 Discarded

Discarded is a keyword indicating that a Packet when received shall be thrown away by the PHY Layer and not passed to the Protocol Layer for processing. No *GoodCRC* Message shall be sent in response to the Packet.

1.4.2.4 Ignored

Ignored is a keyword indicating Messages or Message fields which, when received, shall result in no action by the receiver, aside from returning a *GoodCRC* Message to acknowledge Message receipt.

1.4.2.5 Invalid

Invalid is a keyword when used in relation to a Message indicates that the Message’s usage or fields fall outside of the defined specification usage. When *Invalid* is used in relation to an Explicit Contract it indicates that a previously established Explicit Contract which can no longer be maintained by the Source.

1.4.2.6 May

May is a keyword that indicates a choice with no implied preference.

1.4.2.7 N/A

N/A is a keyword that indicates that a field or value is not applicable and has no defined value and shall not be checked or used by the recipient.

1.4.2.8 Optional/Optionally/Optional Normative

Optional, *Optionally* and *Optional Normative* are equivalent keywords that describe features not mandated by this specification. However, if an Optional feature is implemented, the feature shall be implemented as defined by this specification.

1.4.2.9 Reserved

Reserved is a keyword indicating reserved bits, bytes, words, fields, and code values that are set-aside for future standardization. Their use and interpretation may be specified by future extensions to this specification and shall not be utilized or adapted by vendor implementation. A *Reserved* bit, byte, word, or field shall be set to zero by the sender and shall be *Ignored* by the receiver. *Reserved* field values shall not be sent by the sender and shall be *Ignored* by the receiver.

1.4.2.10 Shall/Normative

Shall and *Normative* are equivalent keywords indicating a mandatory requirement. Designers are mandated to implement all such requirements to ensure interoperability with other compliant Devices.

1.4.2.11 Should

Should is a keyword indicating flexibility of choice with a preferred alternative. Equivalent to the phrase “it is recommended that”.

1.4.3 Numbering

Numbers that are immediately followed by a lowercase "b" (e.g., 01b) are binary values. Numbers that are immediately followed by an uppercase "B" are byte values. Numbers that are immediately followed by a lowercase "h" (e.g., 3Ah) or are preceded by "0x" (e.g. 0xFF00) are hexadecimal values. Numbers not immediately followed by either a "b", "B", or "h" are decimal values.
1.5 Related Documents

- **[USB 3.1]** – Universal Serial Bus 3.1 Specification, Revision 1 plus ECN and Errata (this includes the entire document release package including the OTG&EH v3.0 specification). www.usb.org/developers/docs.
- **[USBTypeCAuthentication 1.0]**, Universal Serial Bus Type-C Authentication Specification, Revision 1.0, March 25, 2016. www.usb.org/developers/docs.
- **[USBBC 1.2]** – Universal Serial Bus Battery Charging Specification, Revision 1.2 plus Errata (referred to in this document as the Battery Charging specification). www.usb.org/developers/docs/devclass_docs/approved.
- **[USBBridge 1.0]** – Universal Serial Bus Type-C Bridge Specification, Revision 1.0, March 25, 2016. www.usb.org/developers/docs.
- **[USBTypeCBridge 1.0]** – Universal Serial Bus Type-C Bridge Specification, Revision 1.0, March 25, 2016. www.usb.org/developers/docs.

• **[USB Type-C 1.2]** – Universal Serial Bus Type-C Cable and Connector Specification, Revision 1.2, March 25, 2016. www.usb.org/developers/docs.
- **[IEC 62368-1]** IEC 62368-1 Audio/Video, information and communication technology equipment – Part 1: Safety requirements