INTERNATIONAL STANDARD

Railway applications – DC surge arresters and voltage limiting devices – Part 2: Voltage limiting devices

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission
CONTENTS

FOREWORD ... 4

1 Scope ... 6

2 Normative references ... 6

3 Terms and definitions ... 7

4 Classes of VLD .. 9

5 Characteristics and requirements of the VLDs .. 10
 5.1 Marking ... 10
 5.2 Service requirements ... 11
 5.2.1 Normal outdoor service conditions .. 11
 5.2.2 Normal indoor service conditions .. 11
 5.2.3 Abnormal service conditions ... 11
 5.3 General characteristics ... 12
 5.4 Minimum requirements .. 12
 5.4.1 Response time ... 12
 5.4.2 Additional requirements for VLDs of Class 1 ... 12
 5.4.3 Additional requirements for VLDs of Classes 3 and 4 ... 12
 5.5 Electrical characteristics and thermal rating .. 12
 5.6 Protection of VLDs against lightning .. 13
 5.7 Command and control (Classes 3 and 4 only) .. 13
 5.7.1 Local control ... 13
 5.7.2 Remote signalling .. 13
 5.7.3 Operation and alarm recordings .. 14

6 Type tests .. 14
 6.1 General ... 14
 6.2 Nominal triggering voltage U_{TN} and non-triggering voltage U_W 15
 6.2.1 Procedure for welding shut spark gap VLDs (Class 1) ... 15
 6.2.2 Procedure for thyristor type VLDs (Class 2) ... 16
 6.2.3 Procedure for mechanical switching VLDs and for combined thyristors with mechanical switching devices VLDs (Class 3 and Class 4) 17
 6.3 Leakage current .. 17
 6.4 DC current withstand .. 18
 6.4.1 General ... 18
 6.4.2 DC rated current test .. 18
 6.4.3 Short time withstand current test .. 19
 6.5 AC current withstand characteristics (optional) ... 20
 6.6 Response time characteristics .. 20
 6.6.1 Response time for DC voltage ... 20
 6.6.2 Response time for combined AC-DC voltage ... 22
 6.7 Lightning current impulse withstand characteristics for VLDs exposed to direct lightning strikes 24
 6.8 Recovery voltage test (Classes 3, 4) .. 25
 6.9 Reverse voltage test (Class 2.1) ... 26
 6.10 Dielectric tests for panel type voltage limiting devices (Classes 3 and 4) 27
 6.10.1 Test conditions ... 27
 6.10.2 Power-frequency voltage withstand test .. 27
 6.11 Degree of protection of enclosures .. 27
 6.12 Environmental tests for outdoor equipment .. 28
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62848-2 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways.

This document is based on EN 50526-2:2014.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2492/FDIS</td>
<td>9/2503/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.
A list of all parts in the IEC 62848 series, published under the general title *Railway applications – DC surge arresters and voltage limiting devices*, can be found on the IEC website.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
RAILWAY APPLICATIONS –
DC SURGE ARRESTERS AND VOLTAGE LIMITING DEVICES –

Part 2: Voltage limiting devices

1 Scope

This document applies to Voltage Limiting Devices (VLDs) to be applied in DC traction systems in order to comply with protective provisions against electric shock from DC, and combined AC – DC voltages, in accordance with the IEC 62128 series, taking into account stray current provisions.

VLDs operate in such a way as to connect the track return circuit of DC railway systems to the earthing system or to conductive parts within the overhead contact line zone or current collector zone.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60085, Electrical insulation – Thermal evaluation and designation

IEC 60529:1989, Degrees of protection provided by enclosures (IP Code)

IEC 60850:2014, Railway applications – Supply voltages of traction systems

IEC 61643-311, Components for low-voltage surge protective devices – Part 311: Performance requirements and test circuits for gas discharge tubes (GDT)

IEC 61992-1:2006, Railway applications – Fixed installations – DC switchgear – Part 1: General

IEC 61992-1:2006/AMD1:2014

IEC 61992-7:2006 (all parts), Railway applications – Fixed installations – DC switchgear – Part 7-x: Measurement, control and protection devices for specific use in d.c. traction systems

IEC 62128-1:2013, Railway applications – Fixed installations – Electrical safety, earthing and the return circuit – Part 1: Protective provisions against electric shock

IEC 62497-1, Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment

IEC 62498-2, Railway applications – Environmental conditions for equipment – Part 2: Fixed electrical installations
IEC 62848-1:2016, Railway applications – DC surge arresters and voltage limiting devices – Part 1: Metal-oxide surge arresters without gaps

ISO 4287:1997, Geometrical Product Specifications (GPS) -Surface texture: Profile method – Terms, definitions and surface texture parameters

ISO 4892-1, Plastics – Methods of exposure to laboratory light sources – Part 1: General guidance

ISO 4892-2, Plastics – Methods of exposure to laboratory light sources – Part 2: Xenon-arc lamps

ISO 4892-3, Plastics – Methods of exposure to laboratory light sources – Part 3: Fluorescent UV lamps

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp

3.1 voltage-limiting device

VLD

protective device whose function is to prevent existence of an impermissible high touch voltage

3.2 recoverable VLD

VLD that recovers after triggering

3.3 non-recoverable VLD

VLD remaining in its low resistance state permanently after triggering

3.4 welding shut spark gap

VLD which is triggered by electrical discharge across a gap causing a permanent short-circuit by welding shut of metallic parts

Note 1 to entry: Sometimes the term voltage fuse is used for this type of VLD.

3.5 rated current

I_r

<for a voltage-limiting device> maximum value of the direct current that may flow for the specified long term through the VLD in specified environmental conditions without exceeding the temperature rise limits