INTERNATIONAL STANDARD

NORME INTERNATIONALE

Railway applications – Rolling stock –
Batteries for auxiliary power supply systems –
Part 1: General requirements

Applications ferroviaires – Matériel roulant –
Batteries pour systèmes d'alimentation auxiliaire –
Partie 1: Exigences générales

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 45.060.01

Warning! Make sure that you obtained this publication from an authorized distributor.
Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.
CONTENTS

FOREWORD .. 5
INTRODUCTION ... 7
1 Scope .. 8
2 Normative references ... 8
3 Terms, definitions and abbreviated terms .. 9
 3.1 Terms and definitions ... 9
 3.2 Abbreviated terms ... 11
4 General requirements ... 12
 4.1 Definitions of components of a battery system, see Figure 1 (images are examples) .. 12
 4.2 Definitions of battery type .. 12
 4.3 Environmental conditions ... 12
 4.4 System requirements ... 13
 4.4.1 System voltage ... 13
 4.4.2 Charging requirements ... 15
 4.4.3 Discharging requirements .. 16
 4.4.4 Charge retention (self-discharge) ... 18
 4.4.5 Requirements for battery capacity sizing ... 18
 4.5 Safety and protection requirements .. 19
 4.5.1 General .. 19
 4.5.2 Deep discharge of batteries .. 19
 4.5.3 Temperature compensation during charging ... 19
 4.6 Fire protection ... 20
 4.7 Maintenance .. 20
 4.8 Charging characteristics .. 20
5 Mechanical design of battery system .. 20
 5.1 General ... 20
 5.2 Interface mechanism .. 20
 5.2.1 General .. 20
 5.2.2 Fixed type ... 20
 5.2.3 Roller type .. 21
 5.2.4 Slide type .. 23
 5.3 Location of battery system on the vehicle ... 24
 5.4 Accessibility to the battery ... 24
 5.5 Ventilation of battery box .. 24
6 Electrical interface ... 25
 6.1 General ... 25
 6.2 External electrical connections interface .. 25
7 Markings .. 26
 7.1 Safety signs ... 26
 7.1.1 Outside the box ... 26
 7.1.2 Tray, crate or other places inside the box .. 26
 7.1.3 Cells or monoblocs .. 26
 7.2 Nameplate .. 26
 7.2.1 Battery box .. 26
 7.2.2 Nameplates on tray, crate, module or other nameplates inside the box 27
Table 1 – Operating range of the equipment supplied by the battery system 13
Table 2 – Requirements of the charging characteristics ... 15
Table 3 – Parameters and responsibility for battery capacity sizing 19
Table C.1 – Examples of functions during different steps of load profile 34
INTERNATIONAL ELECTROTECHNICAL COMMISSION

RAILWAY APPLICATIONS – ROLLING STOCK –
BATTERIES FOR AUXILIARY POWER SUPPLY SYSTEMS –

Part 1: General requirements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62973-1 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2362/FDIS</td>
<td>9/2386/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts in the IEC 62973 series, published under the general title *Railway applications – Rolling stock – Batteries for auxiliary power supply systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This document considers general requirements for all rechargeable battery technologies.

Details of each battery technology are described in other parts as follows:

Part 2: Nickel Cadmium (NiCd) batteries
Part 3: Lead Acid (LA) batteries

Future parts: Other battery technologies, such as Nickel metal hydride (NiMH), Lithium ion (Li-ion), etc.

In this document the interface with a battery charger is specified and the battery charger itself is out of scope.
RAILWAY APPLICATIONS – ROLLING STOCK –
BATTERIES FOR AUXILIARY POWER SUPPLY SYSTEMS –

Part 1: General requirements

1 Scope

This part of IEC 62973 applies to various rechargeable battery technologies for auxiliary power supply systems used on rolling stock.

This document applies to any rolling stock types (e.g. light rail vehicles, tramways, streetcars, metros, commuter trains, regional trains, high speed trains, locomotives, etc.).

This document focuses on:

– the description of electrical interfaces for the following battery nominal voltages: 24 V, 32 V, 36 V, 48 V, 64 V, 72 V, 87 V, 96 V, 110 V;

– the description of electrical interfaces: considering battery load profile and battery capacity sizing parameters (e.g. operating voltage range and charging characteristics).

This document with the other parts of the standard is used in conjunction with other related IEC standards for auxiliary equipment used for railway rolling stock applications.

The main objective of this document is to achieve standardization of the electrical interfaces by considering various battery parameters in order to allow for calculating the battery capacity required for a specific load profile for the various battery technologies as detailed in the other parts of the standard.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60077-1, Railway applications – Electric equipment for rolling stock – Part 1: General service conditions and general rules

IEC 61373:2010, Railway applications – Rolling stock equipment – Shock and vibration test

IEC 62485-2, Safety requirements for secondary batteries and battery installations – Part 2: Stationary batteries

IEC 62498-1:2010, Railway applications – Environmental conditions for equipment – Part 1: Equipment on board rolling stock

IEC 62847, Railway applications – Rolling stock – Electrical connectors – Requirements and test methods

ISO 7010, Graphical symbols – Safety colours and safety signs – Registered safety signs
SOMMAIRE

AVANT-PROPOS ... 39

INTRODUCTION ... 41

1 Domaine d’application ... 42

2 Références normatives .. 42

3 Termes, définitions et termes abrégés .. 43

 3.1 Termes et définitions ... 43

 3.2 Termes abrégés ... 45

4 Exigences générales .. 46

 4.1 Définitions des composants d’un système de batterie, voir Figure 1 (figures purement illustratives) ... 46

 4.2 Définitions des types de batteries .. 46

 4.3 Conditions d’environnement .. 47

 4.4 Exigences système ... 47

 4.4.1 Tension réseau .. 47

 4.4.2 Exigences de charge .. 49

 4.4.3 Exigences de décharge ... 51

 4.4.4 Conservation de la charge (autodécharge) ... 53

 4.4.5 Exigences de dimensionnement de la capacité de la batterie 53

 4.5 Exigences de sécurité et de protection ... 54

 4.5.1 Généralités .. 54

 4.5.2 Décharge profonde des batteries .. 55

 4.5.3 Compensation en température pendant la charge .. 55

 4.6 Protection contre les incendies ... 55

 4.7 Maintenance .. 55

 4.8 Caractéristiques de charge .. 56

5 Conception mécanique du système de batterie ... 56

 5.1 Généralités ... 56

 5.2 Mécanisme d’interface ... 56

 5.2.1 Généralités .. 56

 5.2.2 Type fixe ... 56

 5.2.3 Type à roulement ... 57

 5.2.4 Type à glissières ... 58

 5.3 Emplacement du système de batterie sur le véhicule .. 59

 5.4 Accessibilité à la batterie .. 59

 5.5 Ventilation du coffre batterie .. 59

6 Interface électrique ... 60

 6.1 Généralités ... 60

 6.2 Interface des connexions électriques externes .. 60

7 Marquages .. 61

 7.1 Symboles de sécurité ... 61

 7.1.1 Extérieur du coffre ... 61

 7.1.2 Caisse de groupement, châssis ou autres emplacements à l’intérieur du coffre ... 61

 7.1.3 Eléments ou monoblocs ... 62

 7.2 Plaque signalétique ... 62

 7.2.1 Coffre batterie ... 62
7.2.2 Plaques signalétiques de la caisse de groupement, du châssis, du module ou d'autres éléments à l'intérieur du coffre .. 62
7.2.3 Eléments ou batteries monoblocs .. 62
8 Conditions de stockage et de transport .. 62
8.1 Transport .. 62
8.2 Stockage des batteries .. 62
9 Essai .. 62
9.1 Généralités ... 62
9.2 Essai de type ... 63
9.2.1 Généralités ... 63
9.2.2 Essais de caractéristiques électriques .. 63
9.2.3 Essais diélectriques .. 63
9.2.4 Essai de profil de décharge .. 63
9.2.5 Essai de chocs et vibrations .. 63
9.3 Essai individuel de série ... 64
9.3.1 Généralités ... 64
9.3.2 Vérifications visuelles .. 64
9.3.3 Essais diélectriques .. 64
9.3.4 Essais de caractéristiques électriques .. 64
Annexe A (informative) Exemples de profils de décharge types pour l'alimentation de secours ... 65
A.1 Exemple de profil de décharge pour les trains à grande vitesse (Figure A.1) ... 65
A.2 Exemple de profil de décharge pour les trains régionaux/EMU (Figure A.2) ... 66
Annexe B (normative) Vérification du profil de décharge 67
B.1 Généralités ... 67
B.2 Méthodologie générale ... 67
B.3 Documentation relative au dimensionnement de la batterie 68
B.4 Vérification en fonctionnement (essai de profil de décharge) 68
B.5 Rapport d'essai ... 69
Annexe C (informative) Exemples de fonctions pouvant être alimentées pendant le profil de décharge ... 70
Bibliographie .. 72

Figure 1 – Représentation d’un ou plusieurs éléments, d’une batterie monobloc, d’un châssis, d’une caisse de groupement et d’un coffre batterie ... 46
Figure 2 – Exemples de courbes de décharge à différents courants de décharge constants en fonction du pourcentage de capacité ... 49
Figure 3 – Exemples de courbes de charge .. 49
Figure 4 – Interfaces entre la batterie et le chargeur de la batterie 50
Figure 5 – Exemple de profil de décharge pour l'alimentation de secours des équipements auxiliaires (train à l'arrêt) .. 52
Figure 6 – Exemple de profil de décharge en conditions d'exploitation normale telles que le franchissement de zones de sectionnement (circulation du train sans charge de la batterie) .. 53
Figure 7 – Exemple de solution fixe sans caisse de groupement 56
Figure 8 – Exemple de solution fixe avec caisse de groupement 57
Figure 9 – Exemple de solution à roulement avec traverses repliables 57
Figure 10 – Exemple de solution à roulement avec paliers à rouleaux 58
Figure 11 – Exemple de solution à glissières .. 59
Figure 12 – Schéma type de l'interface électrique d'un système de batterie 60
Figure A.1 – Exemple de profil de décharge pour les trains à grande vitesse (sans segment de démarrage) .. 65
Figure A.2 – Exemple de profil de décharge pour les trains régionaux/EMU (sans segment de démarrage) .. 66

Tableau 1 – Plage de tensions de service des équipements alimentés par le système de batterie .. 48
Tableau 2 – Exigences de caractéristiques de charge .. 50
Tableau 3 – Paramètres et responsabilités concernant le dimensionnement de la capacité de la batterie ... 54
Tableau C.1 – Exemples de fonctions pouvant être alimentées pendant les différents paliers du profil de décharge ... 70
APPLICATIONS FERROVIAIRES – MATÉRIEL ROULANT –
BATTERIES POUR SYSTÈMES D’ALIMENTATION AUXILIAIRE –

Partie 1: Exigences générales

AVANT-PROPOS

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC intéressés sont représentés dans chaque comité d’études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC s’assure de l’exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenu responsable de l’éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d’évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l’IEC. L’IEC n’est responsable d'aucun des services effectués par les organismes de certification indépendants.

6) Tous les utilisateurs doivent s’assurer qu’ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d’études et des Comités nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de toute autre Publication de l’IEC, ou au crédit qui lui est accordé.

8) L’attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire l’objet de droits de brevet. L’IEC ne saurait être tenu pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 62973-1 a été établie par le comité d'études 9 de l'IEC: Matériels et systèmes électriques ferroviaires.

Le texte de cette Norme internationale est issu des documents suivants:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Rapport de vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2362/FDIS</td>
<td>9/2386/RVD</td>
</tr>
</tbody>
</table>

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.
Une liste de toutes les parties de la série IEC 62973, publiées sous le titre général *Applications ferroviaires – Matériel roulant – Batteries pour systèmes d'alimentation auxiliaire*, peut être consultée sur le site web de l'IEC.

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives au document recherché. À cette date, le document sera

- reconduit,
- supprimé,
- remplacé par une édition révisée, ou
- amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.
Le présent document fournit les exigences générales pour l'ensemble des technologies de batteries rechargeables.

Les détails des autres technologies de batteries sont fournis dans les autres parties de la norme:

Partie 2: batteries au nickel-cadmium (NiCd)
Partie 3: batteries au plomb (LA)

Parties ultérieures: autres technologies de batteries, telles que les batteries nickel-métal-hydrures (NiMH), ion-lithium (Li-ion), etc.

Le présent document spécifie l'interface entre la batterie et un chargeur de batterie; les chargeurs de batteries ne relèvent pas du domaine d'application du présent document.
APPLICATIONS FERROVIAIRES – MATÉRIEL ROULANT – BATTERIES POUR SYSTÈMES D'ALIMENTATION AUXILIAIRE –

Partie 1: Exigences générales

1 Domaine d'application

La présente partie de l'IEC 62973 s'applique aux différentes technologies de batteries rechargeables destinées aux systèmes d'alimentation auxiliaire utilisés sur le matériel roulant.

Le présent document s'applique à tout type de matériel roulant (par exemple, véhicules ferroviaires légers, tramways, métros, trains de banlieue, trains régionaux, TGV, locomotives, etc.).

Le présent document porte sur:

– la description des interfaces électriques pour les tensions nominales de batterie suivantes: 24 V, 32 V, 36 V, 48 V, 64 V, 72 V, 87 V, 96 V et 110 V;
– la description des interfaces électriques selon le profil de décharge de la batterie et les paramètres de dimensionnement de la capacité de la batterie (par exemple, plage de tensions de service et caractéristiques de charge).

Le présent document, ainsi que les autres parties de la norme, sont utilisés conjointement avec les autres normes applicables de l'IEC couvrant les équipements auxiliaires destinés aux applications ferroviaires pour le matériel roulant.

Le principal objectif du présent document est d'aboutir à la normalisation des interfaces électriques en étudiant différents paramètres de batteries dans le but de calculer la capacité de batterie exigée pour un profil de décharge donné et pour les différentes technologies de batteries abordées dans les autres parties de la norme.

2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des exigences du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60077-1, Applications ferroviaires – Equipements électriques du matériel roulant – Partie 1: Conditions générales de service et règles générales

IEC 61373:2010, Applications ferroviaires – Matériel roulant – Essais de chocs et vibrations

IEC 62485-2, Exigences de sécurité pour les batteries d'accumulateurs et les installations de batteries – Partie 2: Batteries stationnaires

IEC 62498-1:2010, Applications ferroviaires – Conditions d'environnement pour le matériel – Partie 1: Equipement embarqué du matériel roulant

IEC 62847, Applications ferroviaires – Matériel roulant – Connecteurs électriques – Exigences et méthodes d'essai
ISO 7010, Symboles graphiques – Couleurs de sécurité et signaux de sécurité – Signaux de sécurité enregistrés